1. Find normal force between 6 kg and 4 kg .

(a) 40 N
(b) 50 N
(c) 60 N
(d) 80 N
2. Three blocks of masses m_{1}, m_{2} and $m_{3} \mathrm{~kg}$ are placed in contact with each other on a frictionless table. A force F is applied on the heaviest mass m_{1}. Find net force experienced by m_{2}.

(a) F
(b) $\frac{F_{1}}{m_{2}+m_{3}}$
(c) $\frac{F m_{2}}{m_{1}+m_{2}+m_{3}}$
(d) $\frac{F\left(m_{2+m_{3}}\right)}{m_{1}+m_{2}+m_{3}}$
3. The surfaces are frictionless, the ration of T_{1} and T_{2} is

(a) $\sqrt{3}: 2$
(b) $1: \sqrt{3}$
(c) $1: 5$
(d) $5: 1$
4. In a hemispherical shell of radius R, a rod mass $\frac{\sqrt{3}}{2} \mathrm{~kg}$ is placed horizontally. The length of rod is R. Find the normal reaction at any end of the rod.
(a) 5 N
(b) $5 \sqrt{3} N$
(c) $\frac{5}{\sqrt{3}} \mathrm{~N}$
(d) 2.5 N
5. Three equal weights of mass 2 kg each are hanging by a string passing over a fixed pulley. The tension in the string (in N) connecting B and C is

(a) $\frac{4 g}{3}$
(b) $\frac{g}{3}$
(c) $\frac{2 g}{3}$
(d) $\frac{g}{2}$
6. Find tension acting on 10 kg block.

(a) 30 N
(b) 40 N
(c) 50 N
(d) 60 N
7. Find acceleration of each block.
(a) $3.6 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4.6 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5.6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $6.6 \mathrm{~m} / \mathrm{s}^{2}$

8. Two blocks are in contact on a frictionless table. One has mass m and the other 2 m . A force F is applied on 2 m as shown in the figure. Now, the same force F is applied from the right on m . In the two cases respectively, the ratio of force of contact between the two blocks will be
(a) Same
(b) $1: 2$
(c) $2: 1$
(d) $1: 3$

9. An empty plastic box of mass m is found to accelerate up at the rate of $\frac{g}{6}$ when placed deep inside water. How much mass of sand be filled in it, so that it may accelerate down at the rate of $\frac{g}{6}$?
(a) $\frac{m}{6}$
(b) $\frac{5 m}{6}$
(c) $\frac{2 m}{5}$
(d) $\frac{3 m}{5}$
10. A monkey of mass 20 kg is climbing up on the rope to balance the cage of 25 . What is the acceleration of monkey? $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right]$
(a) $5 \mathrm{~m} / \mathrm{s}^{2}$
(b) $11.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $22.5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2.5 \mathrm{~m} / \mathrm{s}^{2}$

11. A 50 kg person stands on a 25 kg platform. She pulls massless rope which is attached to the platform via the frictionless, massless pulleys as shown in the figure. The platform moves upwards at a steady velocity if the force with which the person pulls the rope is
(a) 500 N
(b) 250 N
(c) 25 N
(d) 50 N

12. A 10 kg wagon is pushed with a force of 7 N for 1.5 s , then with a force of 5 N for 1.7 s , and then with a force of 10 N for 3 s in the same direction. What is the change in velocity brought about?
(a) $9.8 \mathrm{~m} / \mathrm{s}$
(b) $19.6 \mathrm{~m} / \mathrm{s}$
(c) $4.9 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$
13. A balloon has 5 g of air. A small hole is pierced into it. The air escapes at a uniform rate with a velocity of $4 \mathrm{~cm} / \mathrm{s}$. If the balloon shrinks completely in 2.5 s , then the mean force acting on the balloon is
(a) 5 dyne
(b) 8 dyne
(c) 10 dyne
(d) 20 dyne
14. In figure shown, both blocks are released from rest. Find the time to cross each other?
(a) 1 s
(b) 2 s
(c) 3 s
(d) 4 s

1 kg
15. A block slides down a frictionless incline making an angle θ with the floor at an elevator. The elevator is descending with an acceleration a. the value of normal reaction acting on the block is
(a) $m g \sin \theta$
(b) $m(g-a) \cos \theta$
(c) $m g \cos \theta$
(d) $m(g-a) \sin \theta$
16. To paint the side of a building, painter normally hoists himself up by pulling on the rope A as in figure.

The masses of painter and platform are 60 kg and 20 kg , respectively. The rope B can withstand 1000 N .
Find the maximum acceleration of the painter.
(a) $3 \mathrm{~ms}^{-2}$
(b) $2.5 \mathrm{~ms}^{-2}$
(c) $5 \mathrm{~ms}^{-2}$
(d) zero

17. A uniform sphere of weight w and radius 3 m is being held by a string of length 2 m attached to a frictionless wall as shown in the figure. Normal reaction by wall will be
(a) $\frac{5 w}{4}$
(b) $\frac{15 w}{4}$
(c) $\frac{15 w}{16}$
(d) $\frac{3 w}{4}$

18. A spring has length l and spring constant k. It is cut into two pieces of length l_{1} and l_{2} such that $\mathrm{l}_{1}=n \mathrm{l}_{2}$. The force constant of spring of length l_{1} is
(a) $k(l+n)$
(b) $\left(\frac{k(l+n)}{n}\right)$
(c) k
(d) $\frac{k}{(l+n)}$
19. Three masses m_{1}, m_{2} and m_{3} are attached to a string-pulley system as shown. All the three masses are held at rest and then released. To keep m_{3} at rest, m_{3} should be
(a) $\frac{4 m_{1} m_{2}}{m_{1}+m_{2}}$
(b) $2\left(m_{1}+m_{2}\right)$
(c) $\left(m_{1}+m_{2}\right)$
(d) $\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}$

20. A pendulum of mass m hangs from a support fixed to a trolley. The direction of the string when the trolley rolls up a plane of inclination
(a) $\theta=\tan ^{-1} a_{0}$
(b) $\theta=\tan ^{-1} \frac{a_{0}}{g}$
(c) $\theta=\tan ^{-1} \frac{g}{a_{0}}$
(d) $\theta=\tan ^{-1} \frac{a_{0}+g \sin \alpha}{g \cos \alpha}$

