	V PLU	SU	A JEE-J	A Tru Mai	isted Institute of n Advance NEET		DPP	
SUE	BJECT :	TOPIC:			TIME:		DATE:	
1.	If <i>C</i> and <i>R</i> represent respectively, then the dimensional dimensionada dimensionada dimensionada dimensionada di	capacitance and res	sistance		(a) v^2 / rg (c) $v^2 g / r$	(b) (d)	$v^2 r/g$ $v^2 rg$	
	(a) $M^0 L^0 T^2$ (c) ML^{-1}	(b) M⁰L⁰T(d) None of the above	e	9.	The physical quantity formula $M^{1}T^{-3}$ is	which	n has the dime	nsional
2.	The velocity of a freely far where g is acceleration d height. The values of p an	alling body changes a lue to gravity and <i>h</i> d <i>q</i> are	is $g^p h^q$ is the	10.	(a) Surface tension(c) DensityIf the time period (T)	(b) (d) of vi	Solar constant Compressibility bration of a liqui	d drop
	(a) $1, \frac{1}{2}$	(b) $\frac{1}{2}, \frac{1}{2}$			depends on surface ten and density (ρ) of the	sion (S) liquid, t	, radius (r) of the hen the expression	ne drop n of <i>T</i>
	(c) $\frac{-}{2}$,1	(d) 1,1			is (a) $T = k\sqrt{\rho r^3 / S}$	(b)	$T = k \sqrt{\rho^{1/2} r^3 / S}$	
3.	The dimensions of CV^2 matrix (a) L^2I	(b) $L^2 I^2$	ions of	11	(c) $T = k \sqrt{\rho r^3 / S^{1/2}}$	(d)	None of these	
	(c) <i>LI</i> ²	(d) $\frac{1}{LI}$		11.	 (a) Resistivity (c) Resistance 	(b) (d)	Conductivity None of these	
4.	(a) Gallileo(c) Fourier	(b) Newton (d) Joule	d down	12.	The fundamental phys dimensions in the dime angular momentum are	sical qu ensional	antities that have formulae of torq	e same ue and
5.	Dimensions of time in pow	er are			(a) Mass, time(c) Mass, length	(b) (d)	Time, length Time, mole	
	(a) T^{-1} (c) T^{-3}	(b) T^{-2} (d) T^{0}		13.	Dimensions of luminou	s flux ar	re	
	6. The dimension o momentum is	f the ratio of angular to	o linear		(a) ML^2T^{-2} (c) ML^2T^{-1}	(b) (d)	ML^2T^{-3} MLT^{-2}	
	(a) $M^0 L^1 T^0$ (c) $M^1 L^2 T^{-1}$	(b) $M^{1}L^{1}T^{-1}$ (d) $M^{-1}L^{-1}T^{-1}$		14.	Identify the pair which (a) Planck's constant	has diffe and ang	erent dimensions ular momentum	
7.	Let $[\varepsilon_0]$ denotes the dimensional formula of the permittivity of the vacuum and $[\mu_0]$ that of the permeability of the vacuum. If $M = \text{mass}$, $L = \text{length}$,			(b) Impulse and linear momentum(c) Angular momentum and frequency(d) Pressure and Young's modulus				
	T = Time and I = electric curve (a) $[\varepsilon_0] = M^{-1}L^{-3}T^2I$ (c) $[\mu_0] = MLT^{-2}I^{-2}$	(b) $[\varepsilon_0] = M^{-1}L^{-3}T^4I^2$ (d) $[\mu_0] = ML^2T^{-1}I$		15.	Identify the pair whose (a) Torque and work (c) Force and stress	dimensi (b) (d)	ons are equal Stress and energy Force and work	
8.	Given that v is speed, r acceleration due to gravity dimensionless	is the radius and g y. Which of the follow	is the wing is	16.	An object is moving to damping force acting velocity. Then dimension is (a) $ML^{-1}T^{-1}$	hrough on it on of co (b)	the liquid. The v is proportional onstant of proporti <i>MLT</i> ⁻¹	viscous to the onality

V PL	US U	A Trusted Institute of JEE–Main Advance NEET	DPP
SUBJECT :	TOPIC:	TIME:	DATE:
(c) $M^0 L T^{-1}$	(d) ML^0T^{-1}		
17. Dimension of R is			
(a) ML^2T^{-1}	(b) $ML^2T^{-3}A^{-2}$		
(c) $ML^{-1}T^{-2}$	(d) None of these		
18. Frequency is the functi surface tension (<i>T</i>). The	on of density (ρ) , lengthen its value is	n (a) and	
(a) $k\rho^{1/2}a^{3/2}/\sqrt{T}$	(b) $k\rho^{3/2}a^{3/2}/\sqrt{T}$		
(c) $k\rho^{1/2}a^{3/2}/T^{3/4}$	(d) $k\rho^{1/2}a^{1/2}/T^{3/2}$		
19. The dimension of $\frac{R}{L}$ ar	e		
(a) T^2	(b) <i>T</i>		
(c) T^{-1}	(d) T^{-2}		
20. The dimensions of shea	r modulus are		
(a) MLT^{-1}	(b) ML^2T^{-2}		
(c) $ML^{-1}T^{-2}$	(d) MLT^{-2}		
	4		