	V PL	US U	1	Trusted Institute of Main Advance NEET	DPP	
SUE	BJECT :	TOPIC:		TIME:	DATE:	
				(a) $127^{\circ}C$	(b) 227° C	
1.	A Carnot engine worki	ng between 300 K and 6	00 <i>K</i> has	(c) $327^{\circ}C$	(d) $673^{\circ}C$	
	work output of 800 J per cycle. What is amount of heat					
	energy supplied to the engine from source per cycle			8. A Carnot's engine used first an ideal monoatomic gas		
	(a) 1800 <i>J/cycle</i>	(b) 1000 <i>J/cycle</i>		-	ic gas. If the source and sink	
	(c) 2000 <i>J</i> / <i>cycle</i>	(d) 1600 <i>J/cycle</i>		temperature are 411° C	and $69^{\circ}C$ respectively and the	
				engine extracts 1000 J	of heat in each cycle, then area	
2.	The coefficient of performance of a Carnot refrigerator			enclosed by the <i>PV</i> diagram is		
	working between 30° c			(a) 100 J	(b) 300 <i>J</i>	
	(a) 10	(b) 1		(c) $500 J$	(d) 700 <i>J</i>	
	(c) 9	(d) 0				
			9. A Carnot engine absor	rbs an amount Q of heat from a		
3.	Irreversible process is		reservoir at an abosolute temperature T and rejects heat			
	(a) Adiabatic process				ture of $T/3$. The amount of heat	
	(b) Joule-Thomson ex	-		rejected is		
	(c) Ideal isothermal p(d) None of the above			(a) $Q / 4$	(b) $Q/3$	
		2		(c) $Q/2$	(d) $2Q/3$	
1	For a reversible process, necessary condition is					
	(a) In the whole cycle of the system, the loss of any		10. The temperature of sink of Carnot engine is $27^{\circ}C$.			
	type of heat energy should be zero			25%. Then temperature of source		
	(b) That the process s	-		is		
	-	s should be slow so	that the	(a) $227^{\circ}C$	(b) $327^{\circ}C$	
		e should remain in ther		(c) $127^{\circ}C$	(d) $27^{\circ}C$	
	mechanical equilibrium with the surroundings					
	(d) The loss of energy should be zero and it should be <i>quasistatic</i>		nould be	efficiency is η_1 and when $T_1 = 0 \ ^oC$ and $T_2 = -200 \ ^oC$,		
				Its efficiency is η_2 , the		
5.	In a cyclic process, wor	k done by the system is		(a) 0.577	(b) 0.733	
	(a) Zero		Ŧ	(c) 0.638	(d) Can not be calculated	
	(b) Equal to heat give	en to the system				
	(c) More than the heat given to system(d) Independent of heat given to the system			12. A Carnot engine operates between $227^{\circ}C$ and $27^{\circ}C$. Efficiency of the engine will be		
				(a) $\frac{1}{3}$	(b) $\frac{2}{5}$	
6.		ine operates in a Carnot	-	(c) $\frac{3}{4}$	(d) $\frac{3}{5}$	
		$7^{\circ}C$. It absorbs 6×10^4 J	•	$(\cdot) \frac{-1}{4}$	5	
	temperature. The amou	nt of heat converted into	work is			
	····			gree of disorder of a system is		
	(a) $4.8 \times 10^4 J$	(b) $3.5 \times 10^4 J$		known as		
	(c) $1.6 \times 10^4 J$	(d) $1.2 \times 10^4 J$		(a) Isobaric	(b) Isotropy	
				(c) Enthalpy	(d) Entropy	
7.	-	chausting heat at $77^{\circ}C$ is	s to have			
	a 30% efficiency. It mu	st take heat at				

V PLU	US U		usted Institute of in Advance NEET	DPP
SUBJECT :	TOPIC:		TIME:	DATE:
-	Efficiency of a Carnot engine is 50% when temperature		theoretical coefficient of performance is	
of outlet is 500 K. In or 600°			(-) 5	(1.) 0
60% keeping temperatu temperature of outlet	ire of intake the same	what is	(a) 5	(b) 8 (d) 65
(a) 200 <i>K</i>	(b) 400 <i>K</i>		(c) 6	(d) 6.5
(a) 200 K (c) 600 K	(d) 800 K			
(c) 000 K	(d) 800 K			
15. Even Carnot engine because we cannot	cannot give 100% e	fficiency		
(a) Prevent radiation				
(b) Find ideal sources				
(c) Reach absolute zer	o temperature			
(d) Eliminate friction				
 16. "Heat cannot by itself temperature to a body statement or consequence (a) Second law of ther (b) Conservation of ma (c) Conservation of ma (d) First law of thermore 	at higher temperature and an			
17. A Carnot engine take reservoir at 627° <i>C</i> , and work done by the engine	gives it to a sink at 27 e is			
(a) $4.2 \times 10^6 J$	(b) $8.4 \times 10^6 J$			
(c) $16.8 \times 10^6 J$	(d) Zero			
18. The efficiency of C temperature is T_1 and sim	Carnot engine when the temperature is T_2 will			
(a) $\frac{T_1 - T_2}{T_1}$	(b) $\frac{T_2 - T_1}{T_2}$			
(a) $\frac{T_1 - T_2}{T_1}$ (c) $\frac{T_1 - T_2}{T_2}$	(b) $\frac{T_2 - T_1}{T_2}$ (d) $\frac{T_1}{T_2}$			
19. An ideal refrigerator ha	as a freezer at a temper	rature of		
-13°C. The coefficient of	$-13^{\circ}C$. The coefficient of performance of the en			
-	5. The temperature of the air (to which heat is rejected			
will be	(1) 2254			
(a) $325^{\circ}C$	(b) $325K$			
(c) $39^{\circ}C$	(d) $320^{\circ}C$			
20. In a mechanical refriger are at a temperature of in the condenser has	$-23^{\circ}C$ and the compre	essed gas		

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302