	V PLU	USU		usted Institute of in Advance NEET		OPP	
SUP	BJECT :	TOPIC:		TIME:		DATE:	
			I		1 11 0		
1.	microscope are 1 cm	the objective and eye-lens of and 5 <i>cm</i> respectively. If the relaxed eye is 45, then (b) 25 <i>cm</i> (d) 12 <i>cm</i>	the	 (b) Objective should eye piece large (c) Both should have a (d) The objective should have a eye piece should have a The objective lens of a magnification of 10. 	large focal len uld have larg ave small compound mi	gths e focal length an croscope produce	
2.	if the focal length of the (a) Large	ope magnification will be la eye piece is (b) Smaller ective (d)Less than that		magnification of 100 v from the eye, the focal 1 (a) $4 cm$ (c) $\frac{25}{9} cm$	when image is	s formed at 25 ca ye lens should be	
obj	ective						
3.	magnification of the	cope m_1 and m_2 be the line objective lens and eye ifying power of the composition	lens	Least distance of distin power of simple micros (a) 1 / 5 (c) 1 / 6			
	(a) $m_1 - m_2$	(b) $\sqrt{m_1 + m_2}$	10.	10. The magnifying power of a simple microscope is			
	(c) $(m_1 + m_2)/2$	(d) $m_1 \times m_2$	¹ 2	focal length of its lens i of distinct vision is 25 c	be, if least distance		
4.	magnifying power for a length of eye lens is 5 d	bund microscope is 14 cm. relaxed eye is 25. If the forcem, then the object distance	focal e for	(a) 0.05(c) 0.25	(b) 0.06 (d) 0.12		
	objective lens will be(a) $1.8 \ cm$ (b) $1.5 \ cm$			Wavelength of light us $\lambda_1 = 4000 \text{ Å}$ and $\lambda_2 =$			
	(c) 2.1 <i>cm</i>	(d) 2.4 cr		respective resolving pov			
5.	objective of 5 mm focal	r of a microscope with length is 400. The length o focal length of the eye-piec	of its	is (a) 16 : 25 (c) 4 : 5	(b) 9:1 (d) 5:4		
	 (a) 200 cm (c) 2.5 cm 	(b) 160 cm(d) 0.1 cm	12.	The separation between measured P_A and P_A wavelength 2000 Å and	B by two d	lifferent lights of	
6.	convex lens of focal len of distinct vision is 25 cr			(a) $P_A > P_B$ (c) $P_A < 3/2P_B$	(b) $P_A < F$ (d) $P_A = F$		
	(a) 10 (c) 62.5	(b) 0.1 (d) 11	13.	The diameter of the o <i>metre</i> and wavelength power would be approx	of light is 600		
7.	compound microscope	the magnifying power of the objective and the eye piece		 (a) 7.32×10⁻⁶rad (c) 7.32×10⁻⁵rad 	(b) (d)	$1.36 \times 10^{6} rad$ $1.36 \times 10^{5} rad$	

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302

V PLUS U	A Trusted Institute of -Main Advance NEET DPP		
SUBJECT : TOPIC:	TIME: DATE:		
14. To increase the magnifying power of telescope $(f_0 = f_0)$ focal length of the objective and $f_e = f_0$ length of the eye lens)			
 (a) f_o should be large and f_e should be small (b) f_o should be small and f_e should be large (c) f_o and f_e both should be large (d) f_o and f_e both should be small 	 21. Four convergent lenses have focal lengths 100 cm, 10 cm, 4 cm and 0.3 cm. For a telescope with maximum possible magnification, we choose the lenses of focal length (a) 100 cm, 0.3 cm (b) 10 cm, 0.3 cm 		
15. In Gallilean telescope, if the powers of an objective and eye lens are respectively $+1.25 D$ and $-20 D$, then for	d (c) 10 cm, 4 cm (d) 100 cm, 4 cm		
relaxed vision, the length and magnification will be (a) 21.25 cm and 16 (b) 75 cm and 20 (c) 75 cm and 16 (d) 8.5 cm and 21.25	22. The diameter of the objective of a telescope is a, its magnifying power is <i>m</i> and wavelength of light is λ. The resolving power of the telescope is		
16. A reflecting telescope utilizes	(a) $(1.22\lambda)/a$ (b) $(1.22a)/\lambda$		
(a) A concave mirror (b) A convex mirror (c) A prism (d) A plano-convex lens	(c) $\lambda m/(1.22a)$ (d) $a/(1.22\lambda)$		
 The aperture of the objective lens of a telescope is mad large so as to 	 23. In a terrestrial telescope, the focal length of objective is 90 cm, of inverting lens is 5 cm and of eye lens is 6 cm. If the final image is at 30 cm, then the magnification will be 		
(a) Increase the magnifying power of the telescope(b) Increase the resolving power of the telescope	(a) 21 (b) 12 (c) 18 (d) 15		
(c) Make image aberration less(d) Focus on distant objects	24. In a laboratory four convex lenses L_1, L_2, L_3 and L_4 of focal lengths 2, 4, 6 and 8 <i>cm</i> respectively are available.		
 18. Large aperture of telescope are used for (a) Large image (b) Greater resolution (c) Reducing lens aberration (d)Ease of manufacture 	Two of these lenses form a telescope of length 10 <i>cm</i> and magnifying power 4. The objective and eye lenses are		
(c) Reducing iens aberration (d)Lase of manufacture	(a) L_2, L_3 (b) L_1, L_4		
19. All of the following statements are correct except(a) The total length of an astronomical telescope is th	e (c) L_3, L_2 (d) L_4, L_1		
sum of the focal lengths of its two lenses(b) The image formed by the astronomical telescope i always erect because the effect of the combination of the two lenses is divergent	(a) 2×10^5 (b) 2×10^6		
 (c) The magnification of an astronomical telescope ca be increased by decreasing the focal length of th eye-piece 			
(d) The magnifying power of the refracting type of astronomical telescope is the ratio of the foca length of the objective to that of the eye-piece	f the two lenses in normal adjustment will be		
 20. In an astronomical telescope, the focal length of th objective lens is 100 cm and of eye-piece is 2 cm. Th magnifying power of the telescope for the normal eye is (a) 50 (b) 10 	e 27. A telescope of diameter $2m$ uses light of wavelength		

A Trusted Institute of JEE–Main Advance NEET	DPP
TIME:	DATE:
	JEE–Main Advance NEET

- (a) $4 \times 10^{-4} rad$ (b) $0.25 \times 10^{-6} rad$ (c) $0.31 \times 10^{-6} rad$ (d) $5.0 \times 10^{-3} rad$
- **28.** A simple magnifying lens is used in such a way that an image is formed at 25 *cm* away from the eye. In order to have 10 *times* magnification, the focal length of the lens should be

(a) 5 <i>cm</i>	(b) 2 <i>cm</i>
(c) 25 mm	(d) 0.1 mm

- **29.** At Kavalur in India, the astronomers using a telescope whose objective had a diameter of one meter started using a telescope of diameter 2.54 m. This resulted in
 - (a) The increase in the resolving power by 2.54 times for the same λ
 - (b) The increase in the limiting angle by 2.54 times for the same λ
 - (c) Decrease in resolving power
 - (d) No effect on the limiting angle
- **30.** A Galileo telescope has an objective of focal length 100 *cm* and magnifying power 50. The distance between the two lenses in normal adjustment will be
 - (a) 98 cm (b) 100 cm (c) 150 cm (d) 200 cm