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NCERT SOLUTIONS 
PHYSICS XI CLASS 

CHAPTER - 7 
SYSTEM OF PARTICLES AND  

ROTATIONAL MOTION 
 

7.1  Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of 
uniform mass density. Does the centre of mass of a body necessarily lie inside the body? 

Sol. Geometric centre; No 
 The centre of mass (C.M.) is a point where the mass of a body is supposed to be concentrated. For 

the given geometric shapes having a uniform mass density, the C.M. lies at their respective 
geometric centres. 

 The centre of mass of a body need not necessarily lie within it. For example, the C.M. of bodies 
such as a ring, a hollow sphere, etc., lies outside the body. 

 
7.2 In the HCl molecule, the separation between the nuclei of the two atoms is about 1.27 Å  

(1Å = 10–10 m). Find the approximate location of the CM of the molecule, given that a chlorine 
atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is 
concentrated in its nucleus. 

Sol. We consider hydrogen atom at the origin. 
  x1 = 0, x2 = 1.27 Å and m2 = 35.5 m1 
 m2 is mass of Cl atom and m1 is mass of H atom. 
   1 1 2 2 1 1 1cm 1 2 1 1 1

m x m x 0 m 35.5m 1.27 35.5 1.27mX m m m 35.5m 36.6m
        = 1.232 Å 

 
7.3 A child sits stationary at one end of a long trolley moving uniformly with a speed V on a smooth 

horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the speed 
of the CM of the (trolley + child) system? 

Sol. No change 
 The child is running arbitrarily on a trolley moving with velocity v. However, the running of the 

child will produce no effect on the velocity of the centre of mass of the trolley. 
 This is because the force due to the boy’s motion is purely internal. Internal forces produce no effect 

on the motion of the bodies on which they act. Since no external force is involved in the boy–trolley 
system, the boy’s motion will produce no change in the velocity of the centre of mass of the trolley. 

 
7.4 Show that the area of the triangle contained between the vectors a and b is one half of the 

magnitude of a b  . 
Sol. Let OP and OQ represents respectively. 
  | a b | OP OQsin     
  | a b | OP QN    = 2 (Area of OPQ) 
 or Area of OPQ = 1 | a b |2       
 
7.5 Show that a.(b c)  is equal in magnitude to the volume of the parallelepiped formed on the three 

vectors, a, b & c   
Sol. Let three sides of a parallelopiped are represented  
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 by three vectors OA a, OB b and OC c       
 Now, ˆb c bcsin n    = bc sin 90° n̂ = bc n̂   
 where n̂ is a unit vector perpendicular to the plane  
 containing b & c  . 
 Now, ˆ ˆa.(b c) a.bc n a.n bc       = (a . 1 cos 0) bc = abc 
 
7.6 Find the components along the x, y, z axes of the angular momentum L of a particle, whose position 

vector is r with components x, y, z and momentum is p with components px, py and pz. Show that 
if the particle moves only in the x-y plane the angular momentum has only a z-component. 

Sol. We know,  x y zˆ ˆ ˆ ˆ ˆ ˆL r p (xi yj zk) (P i P j P k)          

   x y z
x y z

ˆ ˆ ˆi j k
ˆ ˆ ˆL i L j L k x y z

P P P
        

   
 or x y z z y x z y xˆ ˆ ˆ ˆ ˆ ˆL i L j L k i (yP zP ) j (zP xP ) k (xP yP )         
 Comparing both sides 
  Lx = yPz – zPy 
  Ly = zPx – zPz 
  Lz = xPy – zPx 
 
7.7 Two particles, each of mass m and speed v, travel in opposite directions along parallel lines 

separated by a distance d. Show that the vector angular momentum of the two particle system is the 
same whatever be the point about which the angular momentum is taken. 

Sol. Angular momentum of two particle system about point A on 
X1Y1. 

  AL mv 0 mv d mvd         
 Similarly angular momentum of the two particle system about 

point B on X2Y2. 
  BL mv 0 mvd      
 Now, we consider a point C on AB such that AC = x 
  BC = (d – x) 
 Angular momentum of the two particle system about C is 
  CL mv (x) mv (d x) mvd        
 i.e., A B CL L L     
 
7.8 A non-uniform bar of weight W is suspended at rest by two strings of negligible weight as shown in 

figure. The angles made by the strings with the vertical are 36.9° and 53.1° respectively. The bar is 2 
m long. Calculate the distance d of the centre of gravity of the bar from its left end. 

d
vX1

X2

Y1
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Wd

2m
36.9° 53.1°

 Sol. Let T1 and T2 are tensions in the two strings then for equilibrium in horizontal direction. 

  

Wd

2m

1 = 36.9°  2=53.1
°T1 1cos T2 2cos 

T1 T2

T sin 1 1 T sin 2 2A BC

   T1 sin 1 = T2 sin 2 
 or 1 2

2 1
sin sin 53.1 0.7407

T sin sin 36.9 0.5477
       = 1.3523 

 Let d be the distance of centre of gravity C of the bar from point A. 
 For equilibrium about point C 
  T1 cos 1 . d = T2 sin 2 (2 – d) 
  T1 cos (36.9°) d = T2 cos 53.1° (2 – d) 
 or T1 × 0.8366 d = T2 × 0.6718 (2 – d) 
 or 1

2
T  0.8366 d 0.6718 (2 d)T     

 or 0.7407 0.8366 d 0.6718 (2 d)0.5477      or d = 0.72 cm. 
 
7.9 A car weighs 1800 kg. The distance between its front and back axles is 1.8 m. Its centre of gravity is 

1.05 m behind the front axle. Determine the force exerted by the level ground on each front wheel 
and each back wheel. 

Sol. The weight of the car acts at G.  Let R1 and R2 be the forces exerted by the ground on the front 
wheel and back wheel respectively. 

  R1 + R2 = W = Mg 
  R1 + R2 = 1800 × 9.8 N .......... (1) 
 For equilibrium about point G 
  R1 × 1.05 = R2 × 0.75 
 or 1

2
R 0.75 5
R 1.05 7   .......... (2) 

0.75m 1.05m

R2 R1
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 Using eq. (1) and (2), 2 2
5 R R 1800 9.87       

 or 2
7 1800 9.8R 12
   = 102900 N 

  1 2
5 5R R 1029007 7

       = 7350 N 

  Reaction on each front wheel = 7305
2  = 3675 N 

  Reaction on each rear wheel = 10290
2  = 5145 N 

 
7.10 (a)  Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of 

inertia of the sphere about any of its diameters to be 2MR2/5, where M is the mass of the sphere 
and R is the radius of the sphere. 

 (b)  Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be 
MR2/4, find its moment of inertia about an axis normal to the disc and passing through a point 
on its edge. 

Sol. (a) Applying parallel axes theorem 
 

  I2 = I1 + MR2   =  2 2 22 7MR MR MR5 5     
 (b) Moment of inertia of the disc about any of its diameter 
    
  (i)  Using theorem of perpendicular axes M.I. of the 

disc about an axis through its centre and normal 
to its plane. 

   I = ID + ID = 2 2 2MR MR MR
4 4 2   

  (ii) Using theorem of parallel axis. M.I. of the disc about ab axus passing through an edge point 
and normal to the disc  

   I' = M.I. of the disc about an axis passing through its centre  
   and perpendicular to its plane + MR2 = 2 2 2MR 3MR MR2 2   
 
7.11 Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the 

same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the 
sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a 
greater angular speed after a given time. 

Sol. Let M and R be the mass and radius of the hollow cylinder and the solid sphere then 
 M.I. of hollow cylinder about its axis of symmetry 
    I1 = MR2 
 M.I. of sphere I2 = 22 MR5  
 Consider 1 and 2 be the angular acceleration in the cylinder and the sphere, when an external 

torque  is applied then 
  1 21I MR

    , 2 1222
2.5 2.52I MRMR5

           i.e. 2 > 1 

 From first equation of rotational motion,  = 0 +  t 
 The angular speed of sphere will be more. 

R

I1 I2
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7.12 A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s–1. The radius of 

the cylinder is 0.25 m. What is the kinetic energy associated with the rotation of the cylinder? What 
is the magnitude of angular momentum of the cylinder about its axis? 

Sol. Here, M = 20 kg,  = 100 rad/s, R = 0.25 m 
 Moment of inertia of a solid cylinder is given by 
   21 1I MR 20 0.25 0.252 2      = 0.625 kg m2. 
 (a) Rotational K.E. = 2 21 1I I 0.625 (100)2 2      = 3125 J 
 (b) Angular momentum L = I = 0.625 × 100 = 62.5 kgm2/s 
 
7.13 (a)  A child stands at the centre of a turntable with his two arms outstretched. The turntable is set 

rotating with an angular speed of 40 rev/min. How much is the angular speed of the child if he 
folds his hands back and thereby reduces his moment of inertia to 2/5 times the initial value ? 
Assume that the turntable rotates without friction. 

 (b)  Show that the child’s new kinetic energy of rotation is more than the initial kinetic energy of 
rotation. How do you account for this increase in kinetic energy? 

Sol. (a) Here 1 = 40 rpm,  I2 = 1
2 I5  

  Using the principle of conservation of angular momentum 
   I11 = I22 
  or 1 1 2

2I 40 I5     or  2 = 1000 rpm 
 (b) Initial K.E. of rotation = 21 1

1 I2          or 2i 1 1
1E I (40) 800I2   

  Final K.E. of rotation = 2 22 2 1
1 1 2I I (100)2 2 5     

  or Ef  = 2000 I1   f 1
i 1

E 2000I 2.5E 800I   
 
7.14 A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm. What is 

the angular acceleration of the cylinder if the rope is pulled with a force of 30 N? What is the linear 
acceleration of the rope? Assume that there is no slipping. 

Sol. Here, M = 3 kg, R = 40 cm = 0.40 m, F = 30 N 
 Moment of inertia of the hollow cylinder is I = MR2 = 3 × (0.4)2 = 0.48 kg m2 
 We know,  = F × R = I 
  Angular acceleration,    = F R 30 0.4

I 0.48
   = 25 rad/s2 

 Linear acceleration a = R  = 0.40 × 25 = 10 ms–2 
 
7.15 To maintain a rotor at a uniform angular speed or 200 rad/ s, an engine needs to transmit a torque of 

180 N m. What is the power required by the engine ? Assume that the engine is 100% efficient. 
Sol. Here,  = 200 rad/s,   = 180 Nm 
  Power = .  = 180 × 200 = 36 × 103 W 
 
7.16 From a uniform disk of radius R, a circular hole of radius R/2 is cut out. The centre of the hole is at 

R/2 from the centre of the original disc. Locate the centre of gravity of the resulting flat body. 
Sol. Let mass per unit area of the disc be . 
 Mass of disc = M = R2  
 Mass of scooped out part 

x
OO

R
R2
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  m =  (R/2)2  = 2R M
4 4

    
 If x in the distance of centre of mass form O then  
  1 1 2 2

1 2
m x m x M (0) m (R / 2)x m m M m

      
      (M acts at 0 and m acts at 0') 

     
M R

MR 4 R4 2M 8 3M 6M 4

     


 

 Position of centre of mass is (–R/6, 0). 
7.17 A metre stick is balanced on a knife edge at its centre. When two coins, each of mass 5g are put one 

on top of the other at the 12.0 cm mark, the stick is found to be balanced at 45.0 cm. What is the 
mass of the metre stick? 

Sol. Let m be the mass of the stick which acts at C, (centre point).  

45cm 50cm
A C' C B

10g mg   For equilibrium about C' i.e., 45 cm mark 
  10g (45 – 12) = mg (50 – 45) 
  10g × 33 = mg × 5 
  10 33m 66gm5

   
 
7.18 A solid sphere rolls down two different inclined planes of the same heights but different angles of 

inclination.  
 (a)  Will it reach the bottom with the same speed in each case?  
 (b)  Will it take longer to roll down one plane than the other?  
 (c)  If so, which one and why? 
Sol. Let v be the speed of the solid sphere at the bottom of the incline. 
 Applying principle of conservation of energy we get 2 21 1mv I mgh2 2    
 21 mv2  is kinetic energy. 
 21 I2   is rotational K energy. 
 But I = 2

5  mr2 and v = r 

  2 2 2 21 1 2m (r ) mr mgh2 2 5
       or   2 2 2 2mr mr mgh2 5

    

    27 v gh10     or    10ghv 7  
 as h is same in both the cases v must be the same. 
 
7.19 A hoop of radius 2m weighs 100 kg. It rolls along a horizontal floor so that its centre of mass has a 

speed of 20cm/s. How much work has to be done to stop it? 
Sol. Here, R = 2m, M = 100 kg, v = 20 cm/s = 0.2 m/s 
 T.E. of the loop = 2 21 1Mv I2 2   
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  = 2 2 2 2 21 1 1 1Mv (MR ) Mv Mv2 2 2 2     (v = r) 
  = Mv2 = 100 (0.2)2 = 4J 
 
7.20 The oxygen molecule has a mass of 5.30 × 10–26 kg and a moment of inertia of 1.94 × 10–46 kg m2 

about an axis through its centre perpendicular to the lines joining the two atoms. Suppose the mean 
speed of such a molecule in a gas is 500 m/s and that its kinetic energy of rotation is two thirds of its 
kinetic energy of translation. Find the average angular velocity of the molecule. 

Sol. Here, m = 5.30 × 10–26 kg, I = 1.94 × 10–46 kg m2 , v = 500 m/s 
 Given,  2 21 2 1I mu2 3 2

       

 or  1
2  × (1.94 × 10–46) × 2 = 1

3  × 5.30 × 10–26 × (500)2 

 or 26 42
46

2 5.3 25 10 10
3 1.94 10




      
 or  = 6.7 × 1012 rad/s 
 
7.21 A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined 

plane the centre of mass of the cylinder has a speed of 5 m/s. 
 (a)  How far will the cylinder go up the plane? 
 (b)  How long will it take to return to the bottom? 
Sol. Here,  2

2

g sina K1 r




 

 For solid cylinder K = r / 2  
  2

2

gsin 30 g 1/ 2 ga 1 1/ 2 31 (r 2 )
r

     

 From 3rd equation of motion 
  v2 = u2 + 2as 
  0 = (5)2 + 2 (–g/3) L 
 or 25 3 L2g

     or   L = 3.8 ms 
 From 2nd equation of motion 
  21S ut at2   
  21 gL 0 t2 3

         or 2 6L 6 3.8t g 9.8
   or t = 1.5 sec. 

  Total time for going up and coming down = 2 × 1.5 = 3.0 sec. 
 
7.22 As shown in figure, the two sides of a step ladder 

BA and CA are 1.6 m long and hinged at A. A 
rope DE, 0.5 m is tied half way up. A weight 40 kg 
is suspended from a point F, 1.2 m from B along 
the ladder BA. Assuming the floor to be  
frictionless and neglecting the weight of the ladder, 
find the tension in the rope and forces exerted by 
the floor on the ladder. (Take g = 9.8 m/s2) 

 

A

F

D E

B C
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Sol. Considering the equilibrium of the system in the  
 vertical direction, using S.I. unit 
  R1 + R2 = W = 40 × 9.8 
 or R1 + R2 = 40 × 9.8  ........ (1) 
 Taking moments about A 
  R1 × 0.5 = 40 × 9.8 × 0.125 + R2 × 0.5 
 or R1 = 40 × 9.8 × 0.25 + R2 
 or R1 – R2 = 40 × 9.8 × 0.25 ........ (2) 
 Adding eq. (1) and (2) gives 
  2R1= 40 × 9.8 × 1.25 
  R1 = 245 N      
 Substituting for R1 in eq. (1) 
  R2 = 40 × 9.8 – 245 = 147 N 
 Now considering the equilibrium of side CA along. 
 Taking moments about A 
  T × 0.76 = R2 × 0.5 
   147 0.5T 0.76

  = 97 N 
 
7.23 A man stands on a rotating platform, with his arms stretched horizontally holding a 5 kg weight in 

each hand. The angular speed of the platform is 30 revolutions per minute. The man then brings his 
arms close to his body with the distance of each weight from the axis changing from 90cm to 20cm. 
The moment of inertia of the man together with the platform may be taken to be constant and equal 
to 7.6 kg m2.  

 (a)  What is his new angular speed? (Neglect friction.) 
 (b)  Is kinetic energy conserved in the process? If not, from where does the change come about? 
Sol. Here  I1 =  7.6 + 2 × 5 (0.9)2 = 15.7 kg gm2 
  1 = 30 rpm, I2 = 7.6 + (2 × 5) (0.2)2 = 8.0 kg gm2 
 According to principal of conservation of angular momentum, I11 = I22 
  1 12 2

I 15.7 30 59 rpmI 8
      

 Kinetic energy in this process is not conserved. 
 As moment of inertia in this process decreases, K.E. of rotation increases, which comes out from the 

work done by the man in this process. 
 
7.24 A bullet of mass 10 g and speed 500 m/s is fired into a door and gets embedded exactly at the centre 

of the door. The door is 1.0 m wide and weighs 12 kg. It is hinged at one end and rotates about a 
vertical axis practically without friction. Find the angular speed of the door just after the bullet 
embeds into it. 

Sol. Angular momentum imparted by the bullet 
  L = mvr = (10 × 10–3) × 500 × 1

2  = 2.5 kg m2/s 

 Given  2 2 2ML 12 (1.0)I 4 kg m3 3
    

 From formula,  L = I 
   L 2.5

I 4    = 0.625 rad/sec. 
 
7.25 Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing 

through the centre), and rotating with angular speeds 1 and 2 are brought into contact face to face 

A

F

D E

B C0.5m 0.5m
G

0.25m 0.25m
T TFW

0.4m

0.4m

0.8
m

0.7
6m

R1 R2
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with their axes of rotation coincident. (a) What is the angular speed of the two-disc system? (b) 
Show that the kinetic energy of the combined system is less than the sum of the initial kinetic 
energies of the two discs. How do you account for this loss in energy? Take 1 2. 

Sol. (a) Let I1 and I2 be the moments of inertia of two discs having angular speed 1 and 2.   
  When the two disc are in contact, the moment of inertia of the system will be (I1 + I2).  
  Let its angular velocity is . 
  Applying law of conservation of angular momentum we have,   
  I11 + I22 = (I1 + I2)  
 or 1 1 2 2

1 2
(I I )

(I I )
      

 
 (b) Initial K.E. of the disc, 2 2i 1 1 2 2

1 1E I I2 2     

  Final K.E.,   22 1 1 2 2f 1 2 1 2 21 2
(I I )1 1E (I I ) (I I )2 2 (I I )
             

 Loss in energy = Ei – Ef 
22 2 1 1 2 21 1 2 2 1 2

(I I )1 1I I2 2 2 (I I )
       

21 2 1 2
1 2

I I ( )
2(I I )
    

  The RHS of the above equation is positive i.e., 
   Ei – Ef  > 0  or  Ei > Ef   Thus K.E. of the combined system is less than the sum of the initial kinetic energy of the discs. 

This loss must be due to friction in the contact of the two discs. 
 
7.26 (a)  Prove the theorem of perpendicular axes. 
 (b)  Prove the theorem of parallel axes. 
Sol. (a) The theorem of perpendicular axes states that the 

moment of inertia of a planar body (lamina) about an 
axis perpendicular to its plane is equal to the sum of 
its moments of inertia about two perpendicular axes 
concurrent with perpendicular axis and lying in the 
plane of the body. 

  A physical body with centre O and a point mass m,in 
the x–y plane at (x, y) is shown in the following 
figure.  

  Moment of inertia about x-axis, Ix = mx2 
  Moment of inertia about y-axis, Iy = my2 
  Moment of inertia about z-axis, Iz = 2 2 2m ( x y )  
  Ix + Iy = mx2 + my2 = m (x2 + y2) = 2 2 2m ( x y )   
  Ix + Iy = Iz   Hence, the theorem is proved 
 (b) The theorem of parallel axes states that the moment 

of inertia of a body about any axis is equal to the sum 
of the moment of inertia of the body about a parallel 
axis passing through its centre of mass and the 
product of its mass and the square of the distance 
between the two parallel axes. Suppose a rigid body 
is made up of n particles, having masses m1, m2, m3,  
… , mn, at perpendicular distances r1, r2, r3, … , rn 
respectively from the centre of mass O of the rigid 

z

y

x
X

Y
O

2 2x y
m (x,y)

P S
a

O
ri

mi

Q R
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body. The moment of inertia about axis RS passing 
through the point O: 

   n 2RS i i
i 1

I m r


  
  The perpendicular distance of mass mi, from the axis QP = a + ri   Hence, the moment of inertia about axis QP: 
   n n2 2 2QP i i i i i

i 1 i 1
I m (a r ) m (a r 2ar )

 
       

                    n n n n2 2 2i i i i i RS i i
i 1 i 1 i 1 i 1

m a m r m 2ar Ma I m ar
   

          
    [mi = M; M = Total mass of the rigid body] 
  Now, at the centre of mass, the moment of inertia of all the particles about the axis passing 

through the centre of mass is zero, that is, 
   n

i i
i 1

2 m ar 0


  a  0 

   i im r 0  
     IQP = IRS + Ma2 
  Hence, the theorem is proved 
   
7.27 Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or 

sphere) at the bottom of an inclined plane of a height h is given by 2
2 2

2ghv (1 k / R )  .   
 Note k is the radius of gyration of the body about its symmetry axis, and R is the radius of the body. 

The body starts from rest at the top of the plane. 
Sol. As the body is rolling down an incline plane we can 

apply law of conservation of energy.  
 Total energy at point B = Energy at point A 
 Translational K.E. + Rotational K.E. = Energy at point A  
 or 2 21 1mv I mgh2 2    

 or 22 2
2

1 1 vmv (mk ) mgh2 2 R   [as  = v/R] 

 or 2
2

1 kmv 1 mgh2 R
      or    2

2 2
2ghv (1 k / R )   

 
7.28 A disc rotating about its axis with angular speed 0 is placed lightly (without any translational push) 

on a perfectly frictionless table. The radius of the disc is R. What are the linear velocities of the 
points A, B and C on the disc shown in figure? Will the disc roll in the direction indicated ? 


B

h

A
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R/2
C

A

B

0

 Sol. We know,  v = R 
 For point, A vA = R0 (same direction as arrow) 
 For point, B vB = R0 (opposite direction as arrow) 
 For point, C vC = R0/2 (same direction as arrow) 
 The disc is placed on a perfectly frictionless table so it will not rotate. Without friction, rolling is not 

possible. 
 
 
7.29  Explain why friction is necessary to make the disc in Fig.  (Q.7.28) roll in the direction indicated. 
 (a)  Give the direction of frictional force at B, and the sense of frictional torque, before perfect 

rolling begins. 
 (b)  What is the force of friction after perfect rolling begins? 
Sol. A torque is required to roll the given disc. As per the definition of torque, the rotating force should 

be tangential to the disc. Since the frictional force at point B is along the tangential force at point A, 
a frictional force is required for making the disc roll. 

 (a)  Force of friction acts opposite to the direction of velocity at point B. The direction of linear 
velocity at point B is tangentially leftward. Hence, frictional force will act tangentially 
rightward. The sense of frictional torque before the start of perfect rolling is perpendicular to the 
plane of the disc in the outward direction. 

 (b)  Since frictional force acts opposite to the direction of velocity at point B, perfect rolling will 
begin when the velocity at that point becomes equal to zero. This will make the frictional force 
acting on the disc zero. 

 
7.30 A solid disc and a ring, both of radius 10 cm are placed on a horizontal table simultaneously, with 

initial angular speed equal to 10  rad s–1. Which of the two will start to roll earlier ? The co-
efficient of kinetic friction is µk = 0.2. 

Sol. Initial velocity of centre of mass is zero. Frictional force causes the CM to accelerate. 
 Friction force f = µkR = µkmg   when R = mg 
  µkmg = ma   or a = µkg  ......... (1) 
 From 1st equation of motion 
  v = u + at 
  v = 0 + µkgt   ........... (2) 
 The torque due to friction will decrease the initial angular speed 0 and hence produces angular 

retardation. 
  µkmg × R = I  ( = I) 
 or kmgR

I
     ........... (3) 

 As  = 0 +  t = 0 – kMg Rt
I

  ........... (4) 
 Rolling begins when v = R 
 Multiplying equation (4) by R and using eq. (2) 
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  µk mg = R0 – 2kmgR t
I

  
 For a Ring,  I = mR2 
  µk gt = R0 – µk gt 
 or k0

2 gt
R
     or   0

k
Rt 2 g

   

 For a Disc,  21I mR2  
  µk gt = R0 – 2µk gt  or 0

k
Rt 3 g

   
 Now, 0 = 10 rad s–1,  R = 0.1m ;  µk = 0.2 
 Ring will start rolling after a time,   0

k
R 10 0.1t 2 g 2 0.2 9.8 9.8 0.4

          = 0.8s 
 The disc will start rolling after a time 

  
02 k
R 10 0.1t 0.53 s3 g 3 0.2 9.8

        7.31 A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°. The 
coefficient of static friction µs = 0.25. 

 (a)  How much is the force of friction acting on the cylinder? 
 (b)  What is the work done against friction during rolling? 
 (c)  If the inclination  of the plane is increased, at what value of  does the cylinder begin to skid, 

and not roll perfectly? 
Sol. Here, m = 10 kg, r = 15cm = 0.15m,  = 30°, µs = 0.25 
 (a) Force of friction is given by 
   mgsin 1f 10 9.8 sin 30 16.3 N3 3

          
 (b) The work done against friction during rolling is zero. 
 (c) For rolling without slipping, tan

3
   or  tan  = 3µ = 3 × 0.25 = 0.75 

  or  = 37° 
 
7.32 Read each statement below carefully, and state, with reasons, if it is true or false; 
 (a)  During rolling, the force of friction acts in the same direction as the direction of motion of the 

CM of the body. 
 (b)  The instantaneous speed of the point of contact during rolling is zero. 
 (c)  The instantaneous acceleration of the point of contact during rolling is zero. 
 (d)  For perfect rolling motion, work done against friction is zero. 
 (e)  A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling) 

motion. 
Sol. (a)  False 
  Frictional force acts opposite to the direction of motion of the centre of mass of a body. 
  In the case of rolling, the direction of motion of the centre of mass is backward. Hence, 

frictional force acts in the forward direction. 
 (b)  True 
  Rolling can be considered as the rotation of a body about an axis passing through the point of 

contact of the body with the ground. Hence, its instantaneous speed is zero. 
 (c)  False 
  When a body is rolling, its instantaneous acceleration is not equal to zero. It has some value. 
 (d)  True 
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  When perfect rolling begins, the frictional force acting at the lowermost point becomes zero. 
Hence, the work done against friction is also zero. 

 (e)  True 
  The rolling of a body occurs when a frictional force acts between the body and the surface. This 

frictional force provides the torque necessary for rolling. In the absence of a frictional force, the 
body slips from the inclined plane under the effect of its own weight. 

 
7.33 Separation of Motion of a system of particles into motion of the centre of mass and motion about the 

centre of mass: 
 (a)  Show p = p'i + mi V 
  where pi is the momentum of the ith particle (of mass mi) and p'i = mi v'i. Note v'i is the velocity 

of the ith particle relative to the centre of mass. 
  Also, prove using the definition of the centre of mass p'i = 0. 
 (b)  Show K = K' +1/2MV2. 
  where K is the total kinetic energy of the system of particles, K' is the total kinetic energy of the 

system when the particle velocities are taken with respect to the centre of mass and MV2/2 is the 
kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of 
the system).  

 (c)  Show L = L' + R × MV 
  where L' = r'i + p'i is the angular momentum of the system about the centre of mass with 

velocities taken relative to the centre of mass.  
  Remember r'i = ri – R ; rest of the notation is the standard notation. Note L' and MR × V can be 

said to be angular momenta, respectively, about and of the centre of mass of the system of 
particles. 

 (d)  Show i
dL dprdt dt

     
  Further, show that  ext

dL
dt
    

  where ext  is the sum of all external torques acting on the system about the centre of mass. 
Sol. In this problems symbols used are  
  mi = mass of ith particle. 
  velocity of ith particle 
  relative velocity of ith particle w.r.t. CM. 
  velocity of centre of mass 
  K = K.E. 
  M = Total mass of the system 
 (a) (i) By definition relative velocity of ith particle w.r.t. centre of mass is given by 
   i iV V v       i iV V v     i i i i im V m V m v     

 i i iP P m v     
  (ii) Now,  ii i i i i i

dr d dP m V m m r (0) 0dt dt dt         
   

     
 (b) We know,  21K K Mv2   
  Now,  i i iV V v      or 2 2i i i i 0

1 1m v m (v v )2 2      
  or 2 2 2 2 2i i i i 0 i i i i 0 i i

1 1 1 1m V m (V v 2v .v) m V m v m v .v2 2 2 2                 
  or 2 20 i i 0 i

1 1K K Mv v. m V K Mv v. P2 2            
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  But iP 0      21K K MV2   
 (c) We have to prove, L L R Mv         
  L  angular momentum of the system about any given point O (may be considered origin) 
  i iL (r P )      = angular momentum of the system about the CM with velocities taken relative 

to CM. 
  R  Position of C.M. w.r.t. O. 
  v  Velocity of CM 
  M = Total mass of the system of particles. 
  Also,  ir  Position vector of ith particle w.r.t. O. 
  ir  Position vector of the particle w.r.t. CM. 
  Now,   i ir r R     ........ (1) 
   i iV V v    ........ (2) 
   i iP P Mv     ........ (3) 
  So total angular momentum of the system about O is 
   
   
  i i i i iL (r P ) [(r R) (P m v)]              
  i i i i i ir P R P r m v R m v                   
  i i i i ir P R P (r R) m v                i iL R 0 (m r ) v          
  When  i iL r P      and iP 0   
  By definition of CM, i im rR M


   ;  i im r RM    

   L L R Mv     
 (d) (i) We have to prove, ii

dPdL rdt dt
     

  We have,  i iL (r P )     
   i ii i i i

dP drdL d [r P ] r Pdt dt dt dt
                    

  Now,  ii i
drP m dt
  

   i i ii i
dr dr drP m 0dt dt dt
             ii

dPdL rdt dt
     

 (ii) ii
dPdL rdt dt

     
  From Newton’s second law 
  idP

dt
  = External force acting on ith particle = iF  

    i i
dL r Fdt

     = Sum of all external torques acting on the system, about CM = ext . 


