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NCERT SOLUTIONS 
PHYSICS XII CLASS 

CHAPTER - 13 
NUCLEI 

 
13.1  (a)  Two stable isotopes of lithium 63 Li  and 73 Li  have respective abundances of 7.5% and 92.5%. 

These isotopes have masses 6.01512u and 7.01600u, respectively. Find the atomic mass of 
lithium. 

 (b)  Boron has two stable isotopes, 105 B  and 115 B . Their respective masses are 10.01294 u and 
11.00931 u, and the atomic mass of boron is 10.811u. Find the abundances of 105 B  and 115 B . 

Sol. (a) Atomic weight = weighted average of the isotopes 
    = 6.01512 7.5 7.01600 92.5 45.1134 648.98 6.941u(7.5 92.5) 100

       
 (b) Let relative abundance 105 B  be x%. 
  Relative abundance of  115 B  = (100 – x)% 
  Proceeding as above,  10.01294x 11.00931 (100 x)10.811 100

    
     x = 19.9% and (100 – x) = 80.1%. 
 
13.2 The three stable isotopes of neon: 20 2110 10Ne, Ne and 2210 Ne  have respective abundances of 90.51%, 

0.27% and 9.22%. The atomic masses of the three isotopes are 19.99 u, 20.99 u and 21.99 u, 
respectively. Obtain the average atomic mass of neon. 

Sol. The average atomic mass of neon is  
  m (Ne) = [90.51 × 19.99 + 0.27 × 20.99 + 9.22 × 21.99] × 10–2 = 20.18 u 
 
13.3 Obtain the binding energy (in MeV) of a nitrogen nucleus 147( N) , given 147m ( N) = 14.00307 u. 
Sol. 147 N  nucleus is made up of 7 protons and 7 neutrons. 
 Mass of nucleons forming nucleus = 7mp + 7mn  = Mass of 7 protons + Mass of 7 neutrons 
 = 7 × 1.00783 + 7 × 1.00867u = 7.05431 + 7.06069 = 14.11550 u 
 Mass of nucleus, mN = 14.00307 u 
 Mass defect = 14.11550 – 14.00307 = 0.11243 amu 
 Energy equivalent to mass defect = 0.11243 × 931 = 104.67 MeV 
 Binding energy = 104.67 MeV 
 
13.4 Obtain the binding energy of the nuclei  and in units of MeV from the following data: 
 m ( 5626 Fe ) = 55.934939 amu; m ( 20983 Bi ) = 208.980388 amu. 
Sol. (i) 5626 Fe  nucleus contains 26 protons and (56 – 26) = 30 neutrons 
  Mass of 26 protons = 26 × 1.007825 = 26.20345 amu 
  Mass of 30 neutrons = 30 × 1.008665 = 30.25995 amu 
  Total mass of 56 nucleons = 56.46340 amu 
  Mass of 5626 Fe  nucleus = 55.934939 
  Mass defect, m = 56.46340 – 55.934939 = 0.528461amu 
  Total binding energy = 0.528461 × 931.5 MeV = 492.26MeV 
  Average binding energy per nucleon = 492.26

56  = 8.790 MeV 
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 (ii)  20983 Bi  nucleus contains 83 protons and (209 – 83) = 126 neutrons 
  Mass of 83 protons = 83 × 1.007825 = 83.649475 amu 
  Mass of 126 neutrons = 126 × 1.008665 = 127.091790amu 
  Total mass of nucleons = 210.741260 amu 
  Mass of nucleus = 208.980388 amu 
  Mass defect, m = 210.741260 –  208.980388 = 1.760872 
  Total binding energy = 1.760872 × 931.5 MeV =1640.26 MeV 
  Average binding energy per nucleon = 1640.26

209  = 7.848 MeV 
  Hence, 5626 Fe   has greater B.E. per nucleon than 20983 Bi . 
 
13.5 A given coin has a mass of 3.0 g. Calculate the nuclear energy that would be required to separate all 

the neutrons and protons from each other. For simplicity assume that the coin is entirely made of  
6329 Cu  atoms (of mass 62.92960u). 

Sol. Mass of atom = 62.92960u 
 Mass of 29 elecrons = 29 × 0.000548 u = 0.015892 u 
 Mass of nucleus = (62.92960 – 0.015892) u = 62.913708 u 
 Mass of 29 protons = 29 × 1.007825 u = 29.226925 u 
 Mass of (63 – 29) i.e., 34 neutrons = 34 × 1.008665 u = 34.29461 u 
 Total mass of protons and neutrons = (29.226925 + 34.29461) = 63.521535 u 
 Binding energy = (63.521535 – 62.913708) × 931.5 MeV = 0.607827 × 931.5 MeV 
 Required energy = 236.023 10

63
  × 3 × 0.607827 × 931.5MeV = 1.6 × 1025 MeV = 26 × 1012 J 

 
13.6  Write nuclear reaction equations for 
 (i)  -decay of 22688 Ra  (ii) -decay of 24294 Pu  (iii) –-decay of 3215 P  
 (iv) –-decay of 21083 Bi  (v) +-decay of 116 C  (vi) +-decay of 9743 Tc  
 (vii)  Electron capture of  
Sol. (i) 226 222 488 86 2Ra Rn He    (ii) 242 238 494 92 2Pu U He   
 (iii) 32 32 115 16P S e      (iv) 210 210 183 84Bi Po e     
 (v) 11 116 5C B e      (vi) 97 9743 42Tc Mo e     
 (vii) 120 12054 53Xe e I     
 
13.7 A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to  

(a) 3.125%, (b) 1% of its original value? 
Sol. (a) The fraction of the original sample left = 

53.125 1 1
100 32 2

       
  Hence, there are 5 half lives of T years spent. Thus, the time taken is 5T years. 
 (b) The fraction of the original sample left = 

n1 1
100 2

      
  or 2n = 100  n log 2 = log 100 
  Hence, log100 2n 6.64log 2 0.301    
  Hence, there are 6.64 half lives of T years spent.  Thus, the time taken is 6.64 T years. 
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13.8 The normal activity of living carbon-containing matter is found to be about 15 decays per minute for 

every gram of carbon. This activity arises from the small proportion of radioactive 146 C present with 
the stable carbon isotope 126 C . When the organism is dead, its interaction with the atmosphere 
(which maintains the above equilibrium activity) ceases and its activity begins to drop. From the 
known half-life (5730 years) of 146 C , and the measured activity, the age of the specimen can be 
approximately estimated. This is the principle of 146 C dating used in archaeology. Suppose a 
specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate 
the approximate age of the Indus-Valley civilisation. 

Sol. Here, normal activity,  R0 = 15 decays/min. 
 Present activity R = 9 decays/min., T = 5730 years, Age t=? 
 As activity is proportional to the number of radioactive atoms, therefore, 
  

0 0
N R 9

N R 15   

 But  t
0

N eN
      t t9 3 5e ; e15 5 3

       

   e e
5t log e log 3   = 2.3026 log 1.6667 

  t = 2.3026 × 0.2218 = 0.5109 ;  0.5109t      
 But 10.693 0.693 YrT 5730

    
  0.5109 0.5109 5730t 0.693 / 5730 0.693

   = 4224.3 years 
 
13.9 Obtain the amount of 6027 Co  necessary to provide a radioactive source of 8.0 mCi strength. The half-

life of 6027 Co  is 5.3 years. 
Sol. Strength of radioactive source = 8.0 mCi = 8.0 × 10–3 Ci  
 = 8.0 × 10–3 C × 3.7 × 1010 disintegrations s–1 = 29.6 × 107 disintegrations s–1 
 Since the strength of the source decreases with time, 
  7dN 29.6 10dt    .    But  dN Ndt        –N = – 29.6 × 107    or N = 29.6 × 107 

 or  7 729.6 10 29.6 10 TN 0.693
      0.693

T
      

    729.6 10 5.3 365 24 60 60
0.693

       = 7.137 × 1016 
 Number of atoms in 60g of cobalt =  6.023 × 1023 
 Mass of 1 atom of cobalt 16

23
60 7.139 10 g6.023 10    = 7.11 µg 

 
13.10 The half-life of  is 28 years. What is the disintegration rate of 15mg of this isotope ? 
Sol. Since,   0.693 0.693

T 28 365 24 60 60          = 7.85 × 10–10 s–1 
 90g of Sr contains  6.023 × 1023 atoms 
 15mg of Sr contains,  atoms 
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  23 3
0

6.023 10 15 10N 90
   = 1.0038 × 1020 atoms 

 Disintegration rate,  0
dN Ndt    = 7.85 × 10–10 × 1.0038 × 1020  = 7.88 × 10–10 dps or Bq 

            = 10
10

7.88 10 Ci3.7 10

  = 2.13 Ci 

13.11 Obtain approximately the ratio of the nuclear radii of the gold isotope 19779 Au  and the silver isotope 
10747 Ag . 

Sol. As,  R A1/3 
 

1/3 1/3 1/31 1
2 2

R A 197 (1.84)R A 107
            

  1/3110 102
Rlog log (1.84)R

      

  110 102
R 1 1log log (1.84) 0.2648R 3 3

        = 0.08827 

  1
2

R
R  = antilog (0.08827) = 1.23 

 
13.12 Find the Q-value and the kinetic energy of the emitted -particle in the -decay of (a) 22688 Ra and 

(b) 22086 Rn . Given : m ( 22688 Ra ) = 226.02540u, m ( 22286 Rn ) = 222.01750 u, 
 m ( 22086 Ra ) = 220.01137u, m ( 21684 Po ) = 216.00189 u. 
Sol. (a) The difference in mass between the original nucleus and the decay products  
  = 226.02540u – (222.01750 u + 4.00260u) = + 0.0053u 
  Energy equivalent = 0.0053 × 931.5 MeV = 4.93695 MeV = 4.94 MeV 
  The decay products would emerge with total kinetic energy 4.94 MeV. Momentum is 

conserved.  If the parent nucleus is at rest, the daughter and the -particle have momenta of 
equal magnitude p but opposite direction.  Kinetic energy, K = p2/2m. 

  Since p is the same for the two particles therefore the  kinetic energy divides inversely as their 
mases.  

  The -particle 222
222 4 gets of the total i.e. 222

226   × 4.94 MeV  or   4.85 MeV. 
 (b) The difference in mass between the original nucleus and the decay products 
  = 220.01137u – (216.00189u + 4.00260u) = 0.00688u 
  Energy equivalent = 0.00688u × 931.5 MeV = 6.41 MeV 
    216E 216 4    × 6.41 MeV = 6.29 MeV 
 
13.13 The radionuclide 11C decays according to 11 116 5C B e     ; T1/2 = 20.3 min 
 The maximum energy of the emitted positron is 0.960 MeV. 
 Given the mass values: m (116 C ) = 11.011434 u and m (115 B ) = 11.009305 u. 
 Calculate Q and compare it with the maximum energy of the positron emitted. 
Sol. Mass defect = [m (116 C ) – 6me] – [m (115 B ) – 5me + me] 
 = m (116 C ) – m (115 B ) – 2me = 11.011434 u – 11.009305 u – 2 × 0.000548u = 0.001033 u 
 Q = 0.001033 × 931.5 MeV = 0.962 MeV 
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 Q = Ed + Ee + Ev 
 The daughter nucleus is too heavy compared to e+ and v. So, it carries negligible energy (Ed 0).  If 

the kinetic energy (Ev) carried by the neutrino is minimum (i.e., zero), the positron carries maximum 
energy, and this is practically all energy Q.  Hence, maximum Ee  Q. 

 
13.14 The nucleus 2310 Ne  decays by – emission. Write down the -decay equation and determine the 

maximum kinetic energy of the electrons emitted. Given that: 
 m ( 2310 Ne ) = 22.994466 u, 2311 Na ) = 22.989770 u. 
Sol. The -decay of  2310 Ne may be represented as  
  023 2310 11 1Ne Na e Q     
 Ignoring the rest mass of antineutrino ( )  and electron. 
 Mass defect,  23 2310 11m m ( Ne) m ( Na)   = 22.994466 – 22.989770 = 0.004696 amu 
  Q = 0.004696 × 931 MeV = 4.372 MeV. 
 As 2310 Ne  is very massive, this energy of 4.372 MeV, is shared by e– and   pair.  
 The maximum K.E. of e– = 4.372 MeV, when energy carried by   is zero. 
 
13.15 The Q value of a nuclear reaction : A + b  C + d is defined by Q = [mA + mb – mC – md] c2 
 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the 

following reactions and state whether the reactions are exothermic or endothermic. 
 (i)  1 3 2 21 1 1 1H H H H     (ii) 12 12 20 46 6 10 2C C Ne He    
 Atomic masses are given to be 
 m ( 21 H ) = 2.014102 u ;  m ( 31 H ) = 3.016049 u 
 m (126 C ) = 12.000000 u ; m ( 2010 Ne ) = 19.992439 u 
Sol. (i) 1 3 2 21 1 1 1H H H H    
  Q = m × 931.5 MeV = [m (11H ) + m ( 31 H ) – 2m ( 21 H ) × 931 MeV 
      = [1.007825 + 3.016049 – 2 × 2.014102] × 931 MeV = – 4.03 MeV 
 The reaction is endothermic. 
 (ii)  12 12 20 46 6 10 2C C Ne He    
  Q = m × 931.5 MeV = [m (126 C ) – m ( 2010 Ne ) – m ( 42 He ) × 931 MeV  
      = [24.000000 – 19.992439 – 4.002603] × 931 MeV   = + 4.61 MeV 
 The reaction is exothermic. 
 
13.16 Suppose, we think of fission of a 5626 Fe  nucleus into two equal fragments, 2813 Al . Is the fission 

energetically possible Argue by working out Q of the process.  
 Given m ( 5626 Fe ) = 55.93494 u and m ( 2813 Al ) = 27.98191 u. 
Sol. Q = m ( 5626 Fe ) – 2m ( 2813 Al ) × 931.5 MeV = [55.93494 – 2 × 27.98191] × 931.5 MeV 
 Q = – 0.02886 × 931.5 MeV= –26.88 MeV, which is negative. 
 The fission is not possible energetically. 
 
13.17 The fission properties of 23994 Pu  are very similar to those of 23592 U . The average energy released per 

fission is 180MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure 23994 Pu  
undergo fission? 

Sol. Energy released per fission of 23994 Pu  = 180 MeV 
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 Quantity of fissionable material = 1 kg 
 In 239gm, Pu, number of fissional atom or nuclei = 6.023 × 1023 
 In 1g of Pu, number of fissionable atom or nuclei =  236.023 10

239
  

 In 1000gm of Pu, number of fissionable atom or nuclei = 236.023 10
239
  × 1000 = 25.2 × 1023 

 Energy released in fission of single Pu nucleus = 180 MeV. 
 Energy released in fission of 25.2 × 1023 Pu nucleus or in fission of 1 kg pure Pu 
 = 180 × 25.2 × 1023 = 4536 × 1023 MeV = 4.5 × 1026 MeV 
 
13.18 A 1000 MW fission reactor consumes half of its fuel in 5.00y. How much 23592 U did it contain 

initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from 
the fission of 23592 U and that this nuclide is consumed only by the fission process. 

Sol. Power of reactor = 1000 MW = 103 MW = 109W = 109Js–1. 
 Energy generated by reaction 5 years  = 5 × 365 × 24 × 60 × 60 × 109 J 
 Energy generated per fission = 200 MeV = 200 × 1.6 × 10–13 J 
 Number of fission taking place or number of U235 nuclei required = 9

13
5 365 24 60 60 10

200 1.6 10
    

   
                     = 8.2125 × 1026 × 6 = 49.275 × 1026 
 Mass of 6.023 × 1023 nuclei of U = 235gm = 235 2 × 10–3kg 
 Mass of 8.2125 × 1026 nuclei of U = 3

23
235 10

6.023 10


  × 6 × 8.2125 × 1026 = 1932 kg 

  1
2  of fuel = 1932 kg 

  Total fuel = 3864 kg 
 
13.19 How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of deuterium? Take the 

fusion reaction as : 2 2 31 1 2H H He n 3.2MeV     
 . 
Sol. When two nuclei of deuterium fuse together, 
 Energy released = 3.2 MeV 
 Number of deuterium atoms in 2 kg = 236.023 10

2
  × 2000 = 6.023 × 1026 

 When 6.023 × 1026 nuclei of deuterium fuse together, energy released  
   = 3.2

2  × 6.023 × 1026 MeV = 3.2
2  × 6.023 × 1026 × 1.6 × 10–13 J = 1.54 × 1014 J  or  Ws 

 Power of electric lamp = 100W 
 If the lamp glows for time t, then the electrical energy consumed by the lamp is 100t. 
  100t = 1.54 × 1014 J  or t = 1.54 × 1012 s  = 12

7
1.54 10
3.154 10


  years = 4.88 × 104 years. 

 
13.20 Calculate the height of the potential barrier for a head on collision of two deuterons. Assume that 

they can be taken as hard spheres of radius 2.0 fm.) 
Sol. Suppose the two particles are fired at each other with the same kinetic energy K so that they are 

brought to rest by their mutual Coulomb repulsion when they are just touching each other.  We can 
take this value of K as a representative measure of the height of Coulomb barrier. 

  2
0

1 e2 4 (2R)   
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  2 19 2
12 150

e (1.6 10 )K J16 R 16 3.14 8.85 10 2 10



        = 2.8788 × 10–14 J 

       14
19 3

2.8788 10 keV 179.9 keV1.6 10 10



    

 
13.21 From the relation R = R0A1/3, where R0 is a constant and A is the mass number of a nucleus, show 

that the nuclear matter density is nearly constant (i.e. independent of A). 
Sol. It is found that a nucleus of mass number A has a radius R = R0A1/3 
 where,  R0 = 1.2 × 10–15 m 
 This implies that the volume of the nucleus, which is proportional to R3 is proportional to A. 
 Volume of nucleus = 3 1/3 3 30 0

4 4 4R (R A ) R A3 3 3      
 Density of nucleus  = 33 00

mass of nucleus mA 3m
4volume of nucleus 4 RR A3

  
     

 Above derived equation shows that density of nucleus is constant, independent of A, for all nuclei 
and density of nuclear matter is approximately 2.3 × 107 kg m–3 which is very large as compared to 
ordinary matter, say water which is 103 kg m–3. 

 
13.22 For the + (positron) emission from a nucleus, there is another competing process known as electron 

capture (electron from an inner orbit, say, the K-shell, is captured by the nucleus and a neutrino is 
emitted). A AZ Z 1e X Y        

 Show that if + emission is energetically allowed, electron capture is necessarily allowed but not 
vice versa. 

Sol. Consider the two competing processes: 
  A AZ Z 1 e 1X Y e Q      (positron emission) 
  A AZ Z 1 e 2e X Y Q       (electron capture) 
  A A 21 N Z N Z 1 eQ [m ( X) m ( Y) m ] c   A A 2Z e Z 1 e e[m ( X) Zm m ( Y) (Z 1) m m ] c       
         A A 2Z Z 1 e[m ( X) m ( Y) 2m ] c    
  A A 2 A A 22 N Z e N Z 1 Z Z 1Q [m ( X) m m ( Y)] c [m ( X) m ( Y)] c       
 This means Q1 > 0 implies Q2 > 0 but Q2 > 0 does not necessarily mean Q1 > 0. Hence the result. 
 
13.23 In a periodic table the average atomic mass of magnesium is given as 24.312 u. The average value is 

based on their relative natural abundance on earth. The three isotopes and their masses are  2412 Mg  
(23.98504u), 2512 Mg  (24.98584u) and 2612 Mg  (25.98259u). The natural abundance of 2412 Mg  is 
78.99% by mass. Calculate the abundances of other two isotopes. 

Sol. Isotopes  Abundance Y Atomic mass (Z) 
 12Mg24          78.99         23.98504 
 12Mg25              x          24.98584 
 12Mg26  100 – (78.99 + x)         23.98504 
            = 21.1 – x 
 –––––––––––––––––––––––––––––––––––––––––––– 
    Y = 100 
 Mean atomic mass = 24.312 
 Average atomic mass = YZ

Y

  
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  78.99 23.98504 x 24.98584 (21.01 x) 25.9825424.312 100
       

 or 2431.2 = 1894.58 + 24.98584x + 545.89 – 25.98254x 
 or 2431.2 = 2440.47 – 0.99675x 
 or 0.99675x = 2440.47 – 2431.2 = 9.27 
 or 9.27x 9.300.99675   
  21.01 – x = 21.01 – 9.30 = 11.71 
 Relative abundance of 12Mg25 = 9.30% 
 Relative abundance of 12Mg26 = 11.71% 
 
13.24 The neutron separation energy is defined as the energy required to remove a neutron from the 

nucleus. Obtain the neutron separation energies of the nuclei 4120 Ca  and 2713 Al  from the following 
data:  m ( 4020 Ca ) = 39.962591 u,    m ( 4120 Ca ) = 40.962278 u 

   2613 Al   = 25.986895 u,   m ( 2713 Al ) = 26.981541 u 
Sol. The equation for the neutron separation in first case can be written as, 41 40 020 1 20 1Ca Q Ca n    
  m = m ( 4020 Ca ) + m ( 01 n ) – m ( 4120 Ca )= 39.962591 + 1.008655 – 40.962278 = 0.008978 u 
 But, 1u 931.5 MeV 
 Hence, 0.008978  0.008978 × 931.5 MeV = 8.363 MeV 
  27 26 013 2 13 1Al Q Al n    
  m = m ( 2613 Al ) + m ( 01 n ) – m ( 2713 Al ) 
 But, 1u 931.5 MeV 
 Hence, 0.014019  0.014019 × 931.5 MeV = 13.06 MeV 
 
13.25 A source contains two phosphorous radio nuclides 3215 P  (T1/2 = 14.3d) and 3315 P  (T1/2 = 25.3d). 

Initially, 10% of the decays come from 3315 P . How long one must wait until 90% do so? 
Sol. We know that dN Ndt   
 So, clearly the initial ratio of the amounts of 3315 P and 3215 P  is 1 : 9. We have to find the time after 

which the ratio is 1:9. 
 Initially, if the amount of 3315 P is x, the amount of 3215 P is 9x. 
 Finally, if the amount of 3315 P is 9y, the amount of 3215 P is y. 
 Using,   0

t /T
NN 2    ;     t /25.3

x9y 2      ;    t /14.3
9xy 2  

 Dividing, t /14.3
t/25.3

x 29 9x2    or 
t t

14.3 25.381 2        or 
11t

361.7981 2  

 or 10 10
11t 11 0.3010tlog 81 log 2361.79 361.79

   = 9.15 × 10–3 t 
  9.15 × 10–3 t = 1.91 or 1.91 1000t d 208.7 d9.15

   
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13.26 Under certain circumstances, a nucleus can decay by emitting a particle more massive than an -
particle. Consider the following decay processes: 

  223 209 1488 82 6Ra Pb C   
  223 219 488 86 2Ra Rn He   
 Calculate the Q-values for these decays and determine that both are energetically allowed. 
Sol. (i) For decay process  223 209 1488 82 6Ra Pb C   + Q 
  Mass defect, m = mass of Ra223 – (mass of Pb209 + mass of C14) 
       = 223.01850 – (208.98107 + 14.00324) = 0.03419 u 
  Q = 0.03419 × 931 MeV = 31.83 MeV 
 (ii) For decay process 223 219 488 86 2Ra Rn He   + Q 
  Mass defect, m = mass of Ra223 – (mass of Rn219 + mass of He4) 
       = 223.01850 – (219.00948 + 4.00260) = 0.00642 u 
  Q = 0.00642 × 931 MeV = 5.98 MeV 
  As Q-values are positive in both the cases, therefore both the decays are energetically possible. 
 
13.27 Consider the fission of 23892 U by fast neutrons. In one fission event, no neutrons are emitted and the 

final end products, after the beta decay of the primary fragments, are 14058 Ce  and 9944 Ru . Calculate Q 
for this fission process. The relevant atomic and particle masses are 

 m ( 23892 U ) =238.05079 u, m (14058 Ce ) =139.90543 u, m ( 9944 Ru ) = 98.90594 u 
Sol. Fission reaction is : 238 1 140 9992 0 58 44U n Ce Ru Q       
 Q-value = (mass of U238 + mass of 10 n  – mass of Ce140 – mass of Ru99) × 931.5 MeV 
         =  (238.05079 + 1.00867 – 139.90543 – 98.90594) × 931.5 MeV = 231.1 MeV 
 
13.28 Consider the D-T reaction (deuterium-tritium fusion) 
  2 3 41 1 2H H He n    
 (a)  Calculate the energy released in MeV in this reaction from the data: 
  m ( 21 H ) = 2.014102 u 
  m ( 31 H ) = 3.016049 u 
 (b)  Consider the radius of both deuterium and tritium to be approximately 2.0 fm. What is the 

kinetic energy needed to overcome the coulomb repulsion between the two nuclei? To what 
temperature must the gas be heated to initiate the reaction? 

Sol. (a) For the process 2 3 41 1 2H H He n    + Q 
  Q-value = [mass of 21 H + mass of  31 H – mass of  42 He  – mass of n] × 931 MeV  
  = (2.014102 + 3.016049 – 4.002603 – 1.00867) × 931 MeV = 0.018878 × 931 = 17.58 MeV 
 (b) Repulsive potential energy of two nuclei when they almost touch each other is 
   2 9 19 2

150
q 9 10 (1.6 10 )

4 (2r) 2 2 10



     Joule  5.76 × 10–14 J 

   Classically, K.E. at least equal to this amount is required to overcome coulomb repulsion.  
   Using relation 3KE 2 kT2    ;  14

23
KE 5.76 10T 3k 3 1.38 10




      = 1.39 × 109 K 
  In actual practice, the temperature required for trigerring the reaction is somewhat less. 
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13.29 Obtain the maximum kinetic energy of -particles, and the radiation frequencies of  decays in the 
decay scheme shown in figure. You are given that 

  m (198Au) = 197.968233 u 
  m (198Hg) = 197.966760 u 

19879 Au

19880 Hg
O

2

1 3

0.412MeV

1.088 MeV
1

–

2
–

 
Sol.  19

1 34
(1.088 0) 1.6 10( ) 6.62 10




       = 2.63 × 1020 s–1 

  13
2 34

(0.412 0) 1.6 10( ) 6.62 10



       = 9.96 × 1020 s–1 

 13
3 34

(1.088 0.412) 1.6 10( ) 6.62 10



       = 1.63 × 1020 s–1 

 The emission of 1  decay may be represented as: 
  0198 19879 80 1 11Au Hg e E ( ) E ( )      ,  where, E (1) = 1.088 MeV 
 Now,  198 1981 79 80 eE ( ) [m ( Au) m ( Hg) m ]     × 931.5 MeV – E (1)  
 where m (19879 Au ) and m (19880 Hg ) are masses of the 19879 Au  and 19879 Au  nuclei. 
  1981 79 eE ( ) [{M ( Au) 79m }   19880 e e{M ( Hg) 80m } m ]    × 931.5 – 1.088 
  = 198 19879 80[M ( Au) M ( Hg)]  × 931.5 – 1.088 
  = 197.968233 – 197.966760) × 931.5 – 1.088 = 1.372 – 1.088 = 0.284 MeV 
 The emission of 2  decay may be represented as: 
  0198 19879 80 2 21Au Hg e E ( ) E ( )       
 As in case of 1  decay, it can be deducted that 
  198 1982 79 80E ( ) [M ( Au) M ( Hg)]    × 931.5 – E (2) = 1.372 – 0.412 = 0.960 MeV 
 
13.30 Calculate and compare the energy released by (a) fusion of 1.0 kg of hydrogen deep within Sun and 

(b) the fission of 1.0 kg of 235U in a fission reactor. 
Sol. In sun, four hydrogen nuclei fuse to form a helium nucleus with the release of 26 MeV energy. 
   Energy released by fusion of 1 kg of hydrogen = 23 36 10 26 10 MeV4

    
  E1 = 39 × 1026 MeV 
 As energy released in fission of one atom of  92U235 = 200MeV 
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   Energy released by fission of 1 kg of 92U235 = 236 10 1000 200 MeV235
    

  E2 = 5.1 × 1026 MeV 
  261

262
E 39 10 7.65E 5.1 10

   
 i.e., energy released in fusion is 7.65 times the energy released in fission. 
 
13.31 Suppose India had a target of producing by 2020 AD, 200,000 MW of electric power, ten percent of 

which was to be obtained from nuclear power plants. Suppose we are given that, on an average, the 
efficiency of utilization (i.e. conversion to electric energy) of thermal energy produced in a reactor 
was 25%. How much amount of fissionable uranium would our country need per year by 2020? 
Take the heat energy per fission of 235U to be about 200MeV. 

Sol. Target of producing electric power = 100,000 MW. 
 Required electric power from nuclear plants = 100000 × 10

100  = 10,000 MW 
 Therefore, required electric energy from nuclear plants per year  
 = (10,000 × 106 W) × 365 × 24 × 60 × 60 = 3.1536 × 1017 J 
 Electrical energy recovered from the fission of one U235 nucleus = 200 × 25

100  = 50 MeV 
          = 50 × 1.6 × 10–13 = 8 × 10–12 J 
  Number of fissions of U235 nucleus required = 7

12
3.1536 10

8 10


  = 3.942 × 1028 

 Number of moles of U235 required per year = 28
23

3.942 10
6.023 10


  = 6.5449 × 104 

 Therefore, mass of U235 required per year = 6.5449 × 104 × 235 = 1538.054g = 1.538054 kg 


