1. The frequency of vibration f of a mass m suspended from a spring of spring constant K is given by a relation of this type $f=C m^{x} K^{y}$; where C is a dimensionless quantity. The value of x and y are
(a) $x=\frac{1}{2}, y=\frac{1}{2}$
(b) $x=-\frac{1}{2}, y=-\frac{1}{2}$
(c) $x=\frac{1}{2}, y=-\frac{1}{2}$
(d) $x=-\frac{1}{2}, y=\frac{1}{2}$
2. The quantities A and B are related by the relation, $m=A / B$, where m is the linear density and A is the force. The dimensions of B are of
(a) Pressure
(b) Work
(c) Latent heat
(d) None of the above
3. The velocity of water waves v may depend upon their wavelength λ, the density of water ρ and the acceleration due to gravity g. The method of dimensions gives the relation between these quantities as
(a) $v^{2} \propto \lambda g^{-1} \rho^{-1}$
(b) $v^{2} \propto g \lambda \rho$
(c) $v^{2} \propto g \lambda$
(d) $v^{2} \propto g^{-1} \lambda^{-3}$
4. The dimensions of physical quantity X in the equation Force $=\frac{X}{\text { Density }}$ is given by
(a) $M^{1} L^{4} T^{-2}$
(b) $M^{2} L^{-2} T^{-1}$
(c) $M^{2} L^{-2} T^{-2}$
(d) $M^{1} L^{-2} T^{-1}$
5. The Martians use force (F), acceleration (A) and time (T) as their fundamental physical quantities. The dimensions of length on Martians system are
(a) $F T^{2}$
(b) $F^{-1} T^{2}$
(c) $F^{-1} A^{2} T^{-1}$
(d) $A T^{2}$
6. An athletic coach told his team that muscle times speed equals power. What dimensions does he view for muscle
(a) $M L T^{-2}$
(b) $M L^{2} T^{-2}$
(c) $M L T^{2}$
(d) L
7. The dimensions of stress are equal to
(a) Force
(b) Pressure
(c) Work
(d) $\frac{1}{\text { Pressure }}$
8. The dimensions of pressure are
(a) $M L T^{-2}$
(b) $M L^{-2} T^{2}$
(c) $M L^{-1} T^{-2}$
(d) $M L T^{2}$
9. Dimensions of strain are
(a) $M L T^{-1}$
(b) $M L^{2} T^{-1}$
(c) $M L T^{-2}$
(d) $M^{0} L^{0} T^{0}$
10. Dimensions of kinetic energy are
(a) $M L^{2} T^{-2}$
(b) $M^{2} L T^{-1}$
(c) $M L^{2} T^{-1}$
(d) $M L^{3} T^{-1}$
11. In the following list, the only pair which have different dimensions, is
(a) Linear momentum and moment of a force
(b) Planck's constant and angular momentum
(c) Pressure and modulus of elasticity
(d) Torque and potential energy
12. If velocity v, acceleration A and force F are chosen as fundamental quantities, then the dimensional formula of angular momentum in terms of v, A and F would be
(a) $F A^{-1} v$
(b) $F v^{3} A^{-2}$
(c) $F v^{2} A^{-1}$
(d) $F^{2} v^{2} A^{-1}$
13. Dimensions of the following three quantities are the same
(a) Work, energy, force
(b) Velocity, momentum, impulse
(c) Potential energy, kinetic energy, momentum
(d) Pressure, stress, coefficient of elasticity
14. A force F is given by $F=a t+b t^{2}$, where t is time. What are the dimensions of a and b
(a) $M L T^{-3}$ and $M L^{2} T^{-4}$
(b) $M L T^{-3}$ and $M L T^{-4}$
(c) $M L T^{-1}$ and $M L T^{0}$
(d) $M L T^{-4}$ and $M L T^{1}$
15. If the speed of light (c), acceleration due to gravity (g) and pressure (p) are taken as the fundamental quantities, then the dimension of gravitational constant is
(a) $c^{2} g^{0} p^{-2}$
(b) $c^{0} g^{2} p^{-1}$
(c) $c g^{3} p^{-2}$
(d) $c^{-1} g^{0} p^{-1}$
16. If force (F), length (L) and time (T) are assumed to be fundamental units, then the dimensional formula of the mass will be
(a) $F L^{-1} T^{2}$
(b) $F L^{-1} T^{-2}$
(c) $F L^{-1} T^{-1}$
(d) $F L^{2} T^{2}$
17. In a system of units if force (F), acceleration (A) and time (T) are taken as fundamental units then the dimensional formula of energy is
(a) $F A^{2} T$
(b) $F A T^{2}$
(c) $F^{2} A T$
(d) FAT
18. Out of following four dimensional quantities, which one quantity is to be called a dimensional constant
(a) Acceleration due to gravity
(b) Surface tension of water
(c) Weight of a standard kilogram mass
(d) The velocity of light in vacuum
19. The period of oscillation of a simple pendulum is given by $T=2 \pi \sqrt{\frac{l}{g}}$ where l is about 100 cm and is known to have 1 mm accuracy. The period is about 2 s . The time of 100 oscillations is measured by a stop watch of least count 0.1 s . The percentage error in g is
(a) 0.1%
(b) 1%
(c) 0.2%
(d) 0.8%
20. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed
(a) 11%
(b) 8%
(c) 5%
(d) 1%
21. The random error in the arithmetic mean of 100 observations is x; then random error in the arithmetic mean of 400 observations would be
(a) $4 x$
(b) $\frac{1}{4} x$
(c) $2 x$
(d) $\frac{1}{2} x$
22. Error in the measurement of radius of a sphere is 1%. The error in the calculated value of its volume is
(a) 1%
(b) 3%
(c) 5%
(d) 7%
23. The radius of a sphere is $(5.3 \pm 0.1) \mathrm{cm}$. The percentage error in its volume is
(a) $\frac{0.1}{5.3} \times 100$
(b) $3 \times \frac{0.1}{5.3} \times 100$
(c) $\frac{0.1 \times 100}{3.53}$
(d) $3+\frac{0.1}{5.3} \times 100$
24. The period of oscillation of a simple pendulum in the experiment is recorded as $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.42 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.80 s respectively. The average absolute error is
(a) 0.1 s
(b) 0.11 s
(c) 0.01 s
(d) 1.0 s
25. A physical quantity A is related to four observable a, b, c and d as follows, $A=\frac{a^{2} b^{3}}{c \sqrt{d}}$, the percentage errors of measurement in a, b, c and d are $1 \%, 3 \%, 2 \%$ and 2% respectively. What is the percentage error in the quantity A
(a) 12%
(b) 7%
(c) 5%
(d) 14%

TIME:

$$
\begin{aligned}
& z=1 \\
& x+y+z=2 \\
& -x-2 y-2 z=-1
\end{aligned}
$$

DATE:

1. (d) By putting the dimensions of each quantity both the sides we get $\left[T^{-1}\right]=[M]^{x}\left[M T^{-2}\right]^{y}$

Now comparing the dimensions of quantities in both sides we get $x+y=0$ and $2 y=1 \quad \therefore$ $x=-\frac{1}{2}, y=\frac{1}{2}$
2. (c) $m=$ linear density $=$ mass per unit length $=\left[\frac{M}{L}\right]$ $A=$ force $=\left[M L T^{-2}\right] \quad \therefore[B]=\frac{[A]}{[m]}=\frac{\left[M L T^{-2}\right]}{\left[M L^{-1}\right]}=\left[L^{2} T^{-2}\right]$ This is same dimension as that of latent heat.
3. (c) Let $v^{x}=k g^{y} \lambda^{z} \rho^{\delta}$. Now by substituting the dimensions of each quantities and equating the powers of M, L and T we get $\delta=0$ and $x=2, y=1, z=1$.
4. (c) $[X]=[F] \times[\rho]=\left[M L T^{-2}\right] \times\left[\frac{M}{L^{3}}\right]=\left[M^{2} L^{-2} T^{-2}\right]$
5. (d) Acceleration $=\frac{\text { distance }}{\text { time }^{2}} \Rightarrow A=L T^{-2} \Rightarrow L=A T^{2}$
6. (a) According to problem muscle \times speed $=$ power
\therefore muscle $=\frac{\text { power }}{\text { speed }}=\frac{M L^{2} T^{-3}}{L T^{-1}}=M L T^{-2}$
7. (b) $[$ Pressure $]=[$ stress $]=\left[M L^{-1} T^{-2}\right]$
8. (c)
9. (d) Strain is dimensionless.
10. (a) Kinetic energy $=\frac{1}{2} m v^{2}=M\left[L T^{-1}\right]^{2}=\left[M L^{2} T^{-2}\right]$
11. (a) Linear momentum $=$ Mass \times Velocity $=\left[M L T^{-1}\right]$

Moment of a force $=$ Force \times Distance $=\left[M L^{2} T^{-2}\right]$
12. (b) $L \propto v^{x} A^{y} F^{z} \Rightarrow L=k v^{x} A^{y} F^{z}$

Putting the dimensions in the above relation
$\left[M L^{2} T^{-1}\right]=k\left[L T^{-1}\right]^{x}\left[L T^{-2}\right]^{y}\left[M L T^{-2}\right]^{z}$
$\Rightarrow\left[M L^{2} T^{-1}\right]=k\left[M^{z} L^{x+y+z} T^{-x-2 y-2 z}\right]$
Comparing the powers of M, L and T

On solving (i), (ii) and (iii) $x=3, y=-2, z=1$
So dimension of L in terms of v, A and f $[L]=\left[F v^{3} A^{-2}\right]$
13. (d) $[$ Pressure $]=$ Stress $]=$ [coefficient of elasticity $]=$ $\left[M L^{-1} T^{-2}\right]$
14. (b) From the principle of dimensional homogenity $[a]=\left[\frac{F}{t}\right]=\left[M L T^{-3}\right]$ and $[b]=\left[\frac{F}{t^{2}}\right]=\left[M L T^{-4}\right]$
15. (b) Let $[G] \propto c^{x} g^{y} p^{z}$
by substituting the following dimensions:
$[G]=\left[M^{-1} L^{3} T^{-2}\right],[c]=\left[L T^{-1}\right],[g]=\left[L T^{-2}\right]$
$[p]=\left[M L^{-1} T^{-2}\right]$
and by comparing the powers of both sides
we can get $x=0, y=2, z=-1$
$\therefore[G] \propto c^{0} g^{2} p^{-1}$
16. (a) Let $m=K F^{a} L^{b} T^{c}$

Substituting the dimension of
$[F]=\left[M L T^{-2}\right],[C]=[L]$ and $[T]=[T]$
and comparing both sides, we get $m=F L^{-1} T^{-2}$
17. (b) $E=K F^{a} A^{b} T^{c}$
$\left[M L^{2} T^{-2}\right]=\left[M L T^{-2}\right]^{b}\left[L T^{-2}\right]^{b}[T]^{c}$
$\left[M L^{2} T^{-2}\right]=\left[M^{a} L^{a+b} T^{-2 a-2 b+c}\right]$
$\therefore a=1, a+b=2 \Rightarrow b=1$
and $-2 a-2 b+c=-2 \Rightarrow c=2$
$\therefore E=K F A T^{2}$.
18. (d)
19. (c) $T=2 \pi \sqrt{l / g} \Rightarrow T^{2}=4 \pi^{2} l / g \Rightarrow g=\frac{4 \pi^{2} l}{T^{2}}$

Here $\%$ error in $l=\frac{1 \mathrm{~mm}}{100 \mathrm{~cm}} \times 100=\frac{0.1}{100} \times 100=0.1 \%$
and $\%$ error in $T=\frac{0.1}{2 \times 100} \times 100=0.05 \%$
$\therefore \%$ error in $g=\%$ error in $l+2(\%$ error in $T)$

$$
=0.1+2 \times 0.05=0.2 \%
$$

20. (b) $\therefore E=\frac{1}{2} m v^{2}$
$\therefore \%$ Error in K.E.
$=\%$ error in mass $+2 \times \%$ error in velocity
$=2+2 \times 3=8 \%$
21. (b)
22. (b) $\because V=\frac{4}{3} \pi r^{3}$
$\therefore \%$ error is volume $=3 \times \%$ error in radius
$=3 \times 1=3 \%$
23. (b) $\because V=\frac{4}{3} \pi r^{3}$
$\therefore \%$ error in volume
$=3 \times \%$ error in radius.
$=\frac{3 \times 0.1}{5.3} \times 100$
24. (b) Average value $=\frac{2.63+2.56+2.42+2.71+2.80}{5}$

$$
=2.62 \mathrm{sec}
$$

Now $\left|\Delta T_{1}\right|=2.63-2.62=0.01$
$\left|\Delta T_{2}\right|=2.62-2.56=0.06$
$\left|\Delta T_{3}\right|=2.62-2.42=0.20$
$\left|\Delta T_{4}\right|=2.71-2.62=0.09$
$\left|\Delta T_{5}\right|=2.80-2.62=0.18$
Mean absolute error
$\Delta T=\frac{\left|\Delta T_{1}\right|+\left|\Delta T_{2}\right|+\left|\Delta T_{3}\right|+\left|\Delta T_{4}\right|+\left|\Delta T_{5}\right|}{5}$
$=\frac{0.54}{5}=0.108=0.11 \mathrm{sec}$
25. (d) Percentage error in A

$$
=\left(2 \times 1+3 \times 3+1 \times 2+\frac{1}{2} \times 2\right) \%=14 \%
$$

