	V PLU	JS U	A JEE-J	Trusted Institute of Main Advance NEET	DPP
SUI	SJECT :	TOPIC:		TIME:	DATE:
1.	The frequency of vibratio	n f of a mass m su	spended	(c) Work	(d) $\frac{1}{\text{Pressure}}$
	from a spring of spring con- of this type $f = Cm^{x}K^{y}$; quantity. The value of x at (a) $x = \frac{1}{2}, y = \frac{1}{2}$ (c) $x = \frac{1}{2}, y = -\frac{1}{2}$	The formula for the formula f	relation sionless	 8. The dimensions of pres (a) <i>MLT⁻²</i> (c) <i>ML⁻¹T⁻²</i> 9. Dimensions of strain at 	(b) $ML^{-2}T^{2}$ (d) MLT^{2}
2	2 [°] 2 The quantities A and B	2 [°] 2 are related by the	relation	(a) MLT^{-1} (c) MLT^{-2}	(b) ML^2T^{-1} (d) $M^0L^0T^0$
2.	m = A/B, where <i>m</i> is the force. The dimensions of <i>E</i> (a) Pressure (c) Latent heat	 are related by the factors of the above b) Work (d) None of the above 	A is the	10. Dimensions of kinetic e (a) ML^2T^{-2} (c) ML^2T^{-1}	energy are (b) M^2LT^{-1} (d) ML^3T^{-1}
3.	The velocity of water way wavelength λ , the dem acceleration due to gra- dimensions gives the relat as (a) $v^2 \propto \lambda g^{-1} \rho^{-1}$ (c) $v^2 \propto g\lambda$	ves v may depend up sity of water ρ a avity g . The met tion between these qu (b) $v^2 \propto g\lambda\rho$ (d) $v^2 \propto g^{-1}\lambda^{-3}$	oon their and the hod of uantities	 11. In the following list, the dimensions, is (a) Linear momentum (b) Planck's constant (c) Pressure and mod (d) Torque and poten 12. If velocity v, accelerat	n and moment of a force and angular momentum ulus of elasticity tial energy
4.	The dimensions of physica	al quantity X in the e	equation	fundamental quantities, angular momentum in	, then the dimensional formula of terms of v , A and F would be
	Force = $\frac{X}{\text{Density}}$ is given by (a) $M^{1}L^{4}T^{-2}$ (c) $M^{2}L^{-2}T^{-2}$	(b) $M^2 L^{-2} T^{-1}$ (d) $M^1 L^{-2} T^{-1}$		 (a) FA⁻¹v (c) Fv²A⁻¹ 13. Dimensions of the for same 	 (b) Fv³A⁻² (d) F²v²A⁻¹ llowing three quantities are the
5.	The Martians use force (F (T) as their fundaments dimensions of length on M (a) FT^2 (c) $F^{-1}A^2T^{-1}$	T), acceleration (A) at al physical quantities artians system are (b) $F^{-1}T^2$ (d) AT^2	and time es. The	 (a) Work, energy, for (b) Velocity, moment (c) Potential energy, 1 (d) Pressure, stress, c 	rce tum, impulse kinetic energy, momentum oefficient of elasticity
6.	An athletic coach told his equals power. What dim muscle (a) <i>MLT</i> ⁻²	team that muscle time nensions does he v (b) ML^2T^{-2}	es speed iew for	14. A force <i>F</i> is given b What are the dimension (a) MLT^{-3} and ML^2T (c) MLT^{-1} and MLT^{0}	by $F = at + bt^2$, where t is time. as of a and b (b) MLT^{-3} and MLT^{-4} (d) MLT^{-4} and MLT^{-1}
	(c) MLT^2	(d) <i>L</i>		15. If the speed of light (<i>c</i> and pressure (<i>p</i>) are taken by the speed of light (<i>c</i>) are taken by the speed of the sp), acceleration due to gravity (g) ken as the fundamental quantities,
7.	The dimensions of stress at (a) Force	re equal to (b) Pressure		then the dimension of g (a) $c^2 g^0 p^{-2}$ (c) $c g^3 p^{-2}$	gravitational constant is (b) $c^0g^2p^{-1}$ (d) $c^{-1}g^0p^{-1}$

V PLUS	5 U	A Tru JEE–Mai	isted Institute of n Advance N	EET	DPP	
SUBJECT :	TOPIC:		TIME:		DATE:	
16. If force (F) , length (L) and tin	the (T) are assumed to	o be	(c) 5%		(d) 7%	
fundamental units, then the dir mass will be (a) $FL^{-1}T^2$ (b) (c) $FL^{-1}T^{-1}$ (d)	nensional formula of $FL^{-1}T^{-2}$ $FL^{2}T^{2}$	f the 23.	The radius of a error in its volu (a) $\frac{0.1}{5.3} \times 100$ (c) $\frac{0.1 \times 100}{5.3}$	a sphere is (. ume is	5.3 ± 0.1) cm. The p (b) $3 \times \frac{0.1}{5.3} \times 100$ (d) $3 + \frac{0.1}{5.3} \times 100$	percentage
17. In a system of units if force (time (<i>T</i>) are taken as fund dimensional formula of energy	(F), acceleration (A) amental units then is	and the 24.	3.53 The period of experiment is 1	oscillation recorded as	of a simple pendul 2.63 s, 2.56 s, 2.42	lum in the 2 s, 2.71 s
(a) $FA^{2}T$ (b) (c) $F^{2}AT$ (d)	FAT ² FAT		(a) 0.1 s (c) 0.01 s	ectively. In	(b) 0.11 s(d) 1.0 s	error 1s
 18. Out of following four dimension quantity is to be called a dimension quantity is to be called a dimension (a) Acceleration due to gravit (b) Surface tension of water (c) Weight of a standard kilogram (d) The velocity of light in value 	nal quantities, which sional constant y mass cuum	25.	A physical qua and d as follo measurement i respectively. W	ntity A is re ws, $A = \frac{a^{2}i}{c_{V}}$ n <i>a,b,c</i> an /hat is the p	elated to four observ $\frac{b^3}{d}$, the percentage d d are 1%,3%,2% ercentage error in the	able <i>a,b,c</i> e errors of 6 and 2% ne quantity
19. The period of oscillation of a s by $T = 2\pi \sqrt{\frac{l}{g}}$ where <i>l</i> is about have 1mm accuracy. The period 100 oscillations is measured b count 0.1 s. The percentage error (a) 0.1% (b) (c) 0.2% (d)	imple pendulum is g 100 <i>cm</i> and is know 1 is about 2 <i>s</i> . The time by a stop watch of 1 or in <i>g</i> is 1% 0.8%	vn to ne of least	(a) 12% (c) 5%		(b) 7% (d) 14%	
20. The percentage errors in the m speed are 2% and 3% respecti the maximum error in the error obtained by measuring m (a) 11% ((c) 5% (neasurement of mass vely. How much wil stimation of the kir nass and speed b) 8% d) 1%	and ll be netic				
21. The random error in the an observations is <i>x</i> ; then random mean of 400 observations would	rithmetic mean of n error in the arithm d be	100 netic				
(a) $4x$ (b) $\frac{1}{4}x$					
(c) $2x$ (d) $\frac{1}{2}x$					
22. Error in the measurement of r The error in the calculated value (a) 1%	adius of a sphere is e of its volume is b) 3%	1%.				

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302

		V PLUS U	A JEE-	A Trusted Main A	l Institute of dvance NEET	DPP
SUB	JECT	: TOPIC:	·		TIME:	DATE:
1.	(d) the s	By putting the dimensions of each of ides we get $[T^{-1}] = [M]^x [MT^{-2}]^y$ Now comparing the dimensions of both sides we get $x + y = 0$ and $x = -\frac{1}{2}, y = \frac{1}{2}$	quantity both quantities in d $2y = 1$ ∴		z = 1 x + y + z = 2 -x - 2y - 2z = -1 On solving (i), (ii) So dimension of <i>L</i> $[L] = [Fv^{3}A^{-2}]$	(i) (ii) (iii) and (iii) $x = 3, y = -2, z = 1$ L in terms of v, A and f
2.	(c)	m = linear density = mass per unit lenses $A = \text{force} = [MLT^{-2}] \therefore [B] = \frac{[A]}{[m]} = \frac{[MLT]}{[ML^{-1}]}$ This is same dimension as that of later	$agth = \left[\frac{M}{L}\right]$ $\frac{e^{-2}}{1} = [L^2 T^{-2}]$ $ht heat.$	13. (d) [<i>MI</i> 14. (b) [<i>a</i>] =	[Pressure] = [Streen	ss] = [coefficient of elasticity] = ble of dimensional homogenity $[b] = \left[\frac{F}{t^2}\right] = [MLT^{-4}]$
3.	(c) dime <i>M</i> , <i>L</i>	Let $v^x = kg^y \lambda^z \rho^{\delta}$. Now by substensions of each quantities and equating to and T we get $\delta = 0$ and $x = 2, y = 1, z = 1$	ituting the he powers of .	15. (b)	Let $[G] \propto c^x g^y p^z$ by substituting the $[G] = [M^{-1}L^3T^{-2}], [c]$	e following dimensions : = $[LT^{-1}], [g] = [LT^{-2}]$
4.	(c)	$[X] = [F] \times [\rho] = [MLT^{-2}] \times \left[\frac{M}{L^3}\right] = [M^2L$	- ⁻² T ⁻²]		$[p] = [ML^{-1}T^{-2}]$ and by comparing	the powers of both sides
5.	(d)	Acceleration = $\frac{\text{distance}}{\text{time}^2} \Rightarrow A = LT^{-2} \Rightarrow A$	$L = AT^2$		we can get $x = 0, y$ $\therefore [G] \propto c^0 g^2 p^{-1}$	<i>v</i> = 2, <i>z</i> = −1
6.	(a) ∴	According to problem muscle × speed muscle = $\frac{\text{power}}{\text{speed}} = \frac{ML^2T^{-3}}{LT^{-1}} = MLT^{-2}$	= power	16. (a)	Let $m = KF^{a}L^{b}T^{c}$ Substituting the d $[F] = [MLT^{-2}], [C]$	imension of = $[L]$ and $[T] = [T]$
7.	(b)	$[Pressure] = [stress] = [ML^{-1}T^{-2}]$			and comparing bo	th sides, we get $m = FL^{-1}T^{-2}$
8.	(c)			17. (b)	$E = KF^{a}A^{b}T^{c}$ $\left[ML^{2}T^{-2}\right] = \left[MLT^{-2}\right]$ $\left[ML^{2}T^{-2}\right] = \left[MLT^{-2}\right]$	$\begin{bmatrix} LT^{-2} \\ T \end{bmatrix}^{b} \begin{bmatrix} T \end{bmatrix}^{c}$
9. 10.	(d) (a)	Strain is dimensionless. Kinetic energy = $\frac{1}{2}mv^2 = M[LT^{-1}]^2 = [N$	ЛL ² T ⁻²]		$[ML^{2}I^{-2}] = [M^{a}L^{a+b}]$ $\therefore a = 1, a+b=2$ and $-2a-2b+c = -$ $\therefore E = KFAT^{2}.$	$\Rightarrow b = 1$ -2 \Rightarrow c = 2
11.	(a)	Linear momentum = Mass × Velocity Moment of a force = Force × Distance	$= [MLT^{-1}]$ $e = [ML^2T^{-2}]$	18. (d)		
12.	(b)	$L \propto v^{x}A^{y}F^{z} \Rightarrow L = kv^{x}A^{y}F^{z}$ Putting the dimensions in the above re $[ML^{2}T^{-1}] = k[LT^{-1}]^{x}[LT^{-2}]^{y}[MLT^{-2}]^{z}$ $\Rightarrow [ML^{2}T^{-1}] = k[M^{z}L^{x+y+z}T^{-x-2y-2z}]$ Comparing the powers of <i>M</i> , <i>L</i> and <i>T</i>	lation	19. (c)	$T = 2\pi \sqrt{l/g} \implies T^2 =$ Here % error in <i>l</i> and % error in <i>T</i> = $\frac{1}{2}$ \therefore % error in <i>g</i> = %	$= 4\pi^{2} l/g \implies g = \frac{4\pi^{2} l}{T^{2}}$ $= \frac{1mm}{100cm} \times 100 = \frac{0.1}{100} \times 100 = 0.1\%$ $\frac{0.1}{2 \times 100} \times 100 = 0.05\%$ error in $l + 2(\%$ error in T)

	V PLUS U	A Trusted Institute of JEE–Main Advance NEET	DPP
SUBJECT	: TOPIC:	TIME:	DATE:
20. (b)	$= 0.1 + 2 \times 0.05 = 0.2 \%$ $\therefore E = \frac{1}{2}mv^{2}$ $\therefore \% \text{ Error in K.E.}$ $= \% \text{ error in mass} + 2 \times \% \text{ error in velocity}$ $= 2 + 2 \times 3 = 8 \%$		
21. (b)			*
22. (b)	$\therefore V = \frac{4}{3}\pi r^{3}$ $\therefore \% \text{ error is volume} = 3 \times \% \text{ error in rate}$ $= 3 \times 1 = 3\%$	ndius	
23. (b)	$:: V = \frac{4}{3}\pi^{3}$:. % error in volume = 3 × % error in radius. = $\frac{3 \times 0.1}{5.3} \times 100$		
24. (b)	Average value = $\frac{2.63 + 2.56 + 2.42 + 2.71}{5}$ = 2.62 sec Now $ \Delta T_1 = 2.63 - 2.62 = 0.01$ $ \Delta T_2 = 2.62 - 2.56 = 0.06$ $ \Delta T_3 = 2.62 - 2.42 = 0.20$ $ \Delta T_4 = 2.71 - 2.62 = 0.09$ $ \Delta T_5 = 2.80 - 2.62 = 0.18$ Mean absolute error $\Delta T = \frac{ \Delta T_1 + \Delta T_2 + \Delta T_3 + \Delta T_4 + \Delta T_5 }{5}$ $= \frac{0.54}{5} = 0.108 = 0.11$ sec	<u>1+2.80</u>	
25. (d) $= (2$	Percentage error in A $2 \times 1 + 3 \times 3 + 1 \times 2 + \frac{1}{2} \times 2 = 14\%$		

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302