V PLUS U

(b) Work is done by the charge

A Trusted Institute of JEE–Main | Advance | NEET

DPP

SUBJ	ECT : TOPIC: POTENTIAL		DATE:		
1 . 1	inside a hollow charged spherical conductor, the potential (a) Is constant		(c) Work done is constant(d) No work is done		
	(b) Varies directly as the distance from the centre(c) Varies inversely as the distance from the centre(d) Varies inversely as the square of the distance from the centre	7.	Electric lines of force about negative point charge are (a) Circular, anticlockwise (b)Circular, clockwise (c) Radial, inward (d) Radial, outward		
2.	Two small spheres each carrying a charge q are place r metre apart. If one of the spheres is taken around the other one in a circular path of radius r, the work don will be equal to (a) Force between them $\times r$ (b) Force between them $\times 2\pi r$	8. d e e	Charges of $+\frac{10}{3} \times 10^{-9}C$ are placed at each of the four corners of a square of side 8 cm. The potential at the intersection of the diagonals is (a) $150\sqrt{2}$ volt (b) $1500\sqrt{2}$ volt (c) $900\sqrt{2}$ volt (d) 900 volt		
	(c) Force between them /2πr(d) Zero	9.	A uniform electric field having a magnitude E_0 and direction along the positive X-axis exists. If the potential V is zero at $x = 0$, then its value at $X = +x$ will be		
3.	 Two charged spheres of radii 10 <i>cm</i> and 15 <i>cm</i> a connected by a thin wire. No current will flow, if the have (a) The same charge on each (b) The same potential (c) The same energy (d) The same field on their surfaces 	re y 10.	(a) $V_{(x)} = +xE_0$ (b) $V_x = -xE_0$ (c) $V_x = +x^2E_0$ (d) $V_x = -x^2E_0$ Three charges $2q, -q, -q$ are located at the vertices of an equilateral triangle. At the centre of the triangle (a) The field is zero but potential is non-zero (b) The field is non-zero but potential is zero		
4.	The electric potential V at any point O (x, y, z all metres) in space is given by $V = 4x^2 \text{ volt}$. The electr field at the point (1 <i>m</i> ,0,2 <i>m</i>) in volt/metre is (a) 8 along negative X – axis (b) 8 along positive X – axis (c) 16 along negative X – axis (d) 16 along positive Z – axis	n c 11.	 (b) The field is holi-zero but potential is zero (c) Both field and potential are zero (d) Both field and potential are non-zero Figure shows the electric lines of force emerging from a charged body. If the electric field at <i>A</i> and <i>B</i> are <i>E_A</i> and <i>E_B</i> respectively and if the displacement between <i>A</i> and <i>B</i> is <i>r</i> then 		
5. 1 1	 A hollow metal sphere of radius 5 cm is charged so the potential on its surface is 10 V. The potential at the centre of the sphere is (a) 0 V (b) 10 V (c) Same as at point 5 cm away from the surface (d) Same as at point 25 cm away from the surface 	at e	$A \bullet \cdots \bullet B$		
6.]	If a unit positive charge is taken from one point another over an equipotential surface, then (a) Work is done on the charge	0	(a) $E_A > E_B$ (b) $E_A < E_B$ (c) $E_A = \frac{E_B}{r}$ (d) $E_A = \frac{E_B}{r^2}$		

	V PLU	US U	A JEE-	A Trusted Institute of Main Advance NEE	DPP
SUBJE	СТ :	TOPIC: POTI	COPIC: POTENTIAL		DATE:
12. A	 conductor with a posit (a) Is always at +ve posit (b) Is always at zero positive (c) Is always at negative 	ive charge otential otential ve potential		 18. Angle between equis (a) Zero (c) 90° 	uipotential surface and lines of force (b) 180° (d) 45°
13. A ch th T	(d) May be at $+ve$, zer metallic sphere has a charge is brought from the sphere but A being end the net work done is	o or $-ve$ potential charge of $10\mu C$. A unit A to B both $100cm$ aw ast of it while B being	negative vay from on west.	 19. At a certain dista field is 500V/m this distance (a) 6m (c) 36m 	nce from a point charge the electric and the potential is 3000V. What is (b) 12m (d) 144m
14. T 10	(a) Zero (c) –2/10 <i>joule</i> wo plates are 2 <i>cm</i> a 0 <i>volt</i> is applied betw etween the plates is	(b) 2/10 joule (d) −1/10 joule part, a potential diffe veen them, the elect	rence of ric field	 20. Two charge +q distance. At the period (a) Electric field (b) Electric field (c) Electric field (d) Neither electric field 	and $-q$ are situated at a certain oint exactly midway between them and potential both are zero is zero but potential is not zero is not zero but potential is zero ric field nor potential is zero
15. T	(a) $20 N/C$ (c) $5N/C$ here is an electric field	 (b) 500N/C (d) 250N/C 1 E in X-direction. If the second state of the second sta	the work	21. Four identical char each corner of a so energy is required from infinity to the	arges $+50\mu C$ each are placed, one at quare of side $2m$. How much external d to bring another charge of $+50\mu C$ e centre of the square
4.	one on moving a char, <i>m</i> along a line making 0, what is the value of (a) $\sqrt{3}N/C$ (c) $5N/C$	ge 0.2 <i>C</i> through a dis an angle 60° with the <i>E</i> (b) $4N/C$ (d) None of these	stance of <i>X</i> -axis is	(a) $64J$ (c) $16J$	$10^{9} \frac{Nm^{2}}{C^{2}}$ (b) 41J (d) 10J
16. For some set of the set of	our equal charges Q ar quare of each side is harge – Q from its centr (a) 0	The placed at the four correct of a work done in remember to infinity is (b) $\frac{\sqrt{2}Q^2}{4\pi\varepsilon_0 a}$	mers of a noving a	 22. A charge of 5C et is kept in a unifor difference between 1cm (a) 10V (c) 1000V 	experiences a force of 5000 <i>N</i> when it m electric field. What is the potential n two points separated by a distance of (b) 250 <i>V</i> (d) 2500 <i>V</i>
17. A + al po bo	(c) $\frac{\sqrt{2Q}}{\pi \varepsilon_0 a}$ particle A has charge 4q with each of them I lowed to fall from r otential difference, the ecome (a) 2:1 (c) 1:4	(d) $\frac{Q}{2\pi\varepsilon_0 a}$ +q and a particle <i>B</i> hat having the same mass <i>r</i> est through the same e ratio of their speed (b) 1:2 (d) 4:1	as charge n . When electric $\frac{v_A}{v_B}$ will	 23. Two insulated cl 20cm and 15cm charge of 10C are they are separated. (a) Both the sp 10C (b) Surface charge greater than the sp 10C 	harged conducting spheres of radii a respectively and having an equal e connected by a copper wire and then . Then heres will have the same charge of ge density on the 20 <i>cm</i> sphere will be that on the 15 <i>cm</i> sphere

V PLU	SU J	A Tri EE–Ma	usted Institute of in Advance NEET	DPP
SUBJECT :	TOPIC: POTENTIAI			DATE:
(c) Surface charge density greater than that on the(d) Surface charge density equal	y on the 15 <i>cm</i> sphere will e 20 <i>cm</i> sphere y on the two spheres will	be 29 . be	 How much kinetic en particle in going from a 50V (a) 40 eV (c) 40MeV 	ergy will be gained by an α – a point at 70V to another point at (b) 40keV (d) 0eV
24. Two point charges $100 \mu C$ points A and B respecti work done by external for $5 \mu C$ from B to C, where and $\frac{1}{4\pi c_{e}} = 9 \times 10^{9} Nm^{2}/C^{2}$	C and $5 \mu C$ are placed vely with $AB = 40 cm$. T ce in displacing the chan BC = 30 cm, angle $ABC =$	$\begin{bmatrix} at \\ The \\ rge \\ \frac{\pi}{2} \end{bmatrix}$	If a charged spherical potential V at a point of the potential at a point of be (a) $\frac{1}{3}V$	l conductor of radius $10 cm$ has distant $5 cm$ from its centre, then distant $15 cm$ from the centre will (b) $\frac{2}{3}V$
(a) $9J$ ((b) $\frac{81}{20}J$		(c) $\frac{3}{2}V$	(d) 3V
(c) $\frac{1}{25}J$ (c) $\frac{1}{25}J$ (c) 25. Equal charges are given t	(d) $-\frac{1}{4}J$ o two spheres of difference	31. ent	• Two unlike charges of distance 2 <i>d</i> . The potenties them is	magnitude q are separated by a ntial at a point midway between
radii. The potential will(a) Be more on the smaller(b) Be more on the bigger(c) Be equal on both the space	r sphere sphere pheres		(a) Zero (c) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{d}$	(b) $\frac{1}{4\pi\varepsilon_0}$ (d) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{2q}{d^2}$
(d) Depend on the natur spheres	re of the materials of	the 32 .	• A proton is accelerate will increase by	ed through 50,000 V. Its energy
26. An alpha particle is acceld difference of 10 ⁶ volt. Its kir	lerated through a potent netic energy will be	tial	 (a) 5000 eV (c) 5000 J 	(b) $8 \times 10^{-15} J$ (d) 50,000 J
(a) 1 <i>MeV</i> ((c) 4 <i>MeV</i> ((b) 2 <i>MeV</i> (d) 8 <i>MeV</i>	33.	When a proton is ac kinetic energy will be (a) $1840 eV$	Excelerated through $1V$, then its (b) $13.6 eV$
27. A charge of 5 <i>C</i> is given a work done in the procesdifference between the two r	displacement of $0.5m$. T ss is $10J$. The potent points will be	The tial	(c) 1 <i>eV</i>	(d) 0.54 <i>eV</i>
(a) 2V (c) 1V (c)	(b) 0.25 <i>V</i> (d) 25 <i>V</i>	34	and <i>B</i> of an equilateral air. The electric potenti	each are placed at the corners A I triangle of side length 0.2 m in al at C is $\left[\frac{1}{4\pi c} = 9 \times 10^9 \frac{N - m^2}{C^2}\right]$
28. The electric potential V distance x (metre) by $V =$ electric field at $x = 1$ is	is given as a function $(5x^2 + 10x - 9)$ wolt. Value	of of	(a) $9 \times 10^4 V$ (c) $36 \times 10^4 V$	(b) $18 \times 10^4 V$ (d) $36 \times 10^{-4} V$
(a) $20V/m$ (c) $11V/m$ ((d) -23V/m	35	The displacement of $a E = e_1\hat{i} + e_2\hat{j} + e_3\hat{k}$ is $\hat{r} = e_1\hat{i} + e_2\hat{j} + e_3\hat{k}$	a charge Q in the electric field $a\hat{i} + b\hat{j}$. The work done is
			(a) $Q(ae_1 + be_2)$	(b) $Q_{\sqrt{(ae_1)^2 + (be_2)^2}}$

V PLU	US U	A Trusted Institute of JEE–Main Advance NEET	DPP
BJECT :	TOPIC: PO	TENTIAL	DATE:
(c) $Q(e_1 + e_2)\sqrt{a^2 + b^2}$	(d) $Q(\sqrt{e_1^2 + e_2^2})$ (a +	-b)	

V PLUS U

SUBJECT :

A Trusted Institute of JEE–Main | Advance | NEET

TIME:

DPP

DATE:

TOPIC:

- 5. (b) Since potential inside the hollow sphere is same as that on the surface.
- 6. (d) On the equipotential surface, electric field is normal to the charged surface (where potential exists) so that no work will be done.
- 7. (c) Electric lines force due to negative charge are radially inward.

8. (b) Potential at the centre *O*, $V = 4 \times \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{a/\sqrt{2}}$

So $V = 5 \times 9 \times 10^9 \times \frac{\frac{10}{3} \times 10^{-9}}{\frac{8 \times 10^{-2}}{\sqrt{2}}} = 1500\sqrt{2} \text{ volt}$

9. (b)
$$\therefore E = -\frac{dV}{dX} \implies V_x = -xE_0$$

10. (b) Obviously, from charge configuration, at the centre electric field is non-zero. Potential at the centre

due to 2q charge
$$V_{2q} = \frac{2q}{r}$$

and potential due to -q charge $V_{-q} = -\frac{q}{r}$ (*r* = distance of centre point)

 \therefore Total potential $V = V_{2q} + V_{-q} + V_{-q} = 0$

- **11.** (a) In non-uniform electric field. Intensity is more, where the lines are more denser.
- **12.** (d) May be at positive, zero or negative potential, it is according to the way one defines the zero potential.

Since
$$V_A = V_B$$
 so $W_{A \to B} = 0$

14. (b)
$$E = \frac{V}{d} = \frac{10}{2 \times 10^{-2}} = 500 \, N \, / \, C$$

15. (d)
$$W = qV = qE.d$$

 $\Rightarrow 4 = 0.2 \times E \times (2 \cos 60^{\circ})$
 $= 0.2 E \times (2 \times 0.5)$
 $\therefore E = \frac{4}{0.2} = 20 NC^{-1}$

13. (a)

	V PLUS	U	A Trusted Institute of JEE–Main Advance NEET	DPP
SUBJECT	:	TOPIC:	TIME:	DATE:
	$= 50000 \ eV = 50000 \times 1.6 \times 10^{-1}$	$0^{-19} J = 8 \times 10^{-19} J$	^{-15}J	
33. (c)	$\Delta KE = qV = eV = e \times 1 = 1eV$			
34. (c)	Potential at $C = \left(9 \times 10^9 \times \frac{4}{5}\right)^{10}$	$\left(\frac{10^{-6}}{0.2}\right) \times 2 = 36$	$5 \times 10^4 V$	
	$0.2 m \qquad 0.2 n$	B AuC		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
35. (a)	By using $W = Q(\vec{E}.\Delta \vec{r})$			