EQUIPOTENTIAL, ELECTRIC POTENTIAL AND POTENTIAL ENERGY

1. Electric lines of force always leave an equipotential surface
1) At any angle to the surface
2) Perpendicular to the surface
3) Parallel to the surface
4) none
2. A unit charge is taken from one point to another over an equipotential surface, then
1) Work is done on the charge
2) Work is done by the charge
3) Work on the charge is constant
4) No work is done
3. Inside a hollow spherical conductor, the potential

1) is constant
2) varies directly as the distance from the centre
3) varies inversely as the distance from the centre
4) varies inversely as the square of the distance from the centre.
4. Choose the correct statement

1) An electron at a higher potential has lower potential energy
2) An electron at a lower potential has lower potential energy
3) An electron moves from higher to lower potential
4) None of the above
5. Choose the correct statement
1) A zero potential point is always a zero electric intensity point
2) A zero electric intensity point is always a zero potential point
3) At a point of zero electric intensity electric potential may not be zero
4) all the above
6. When the separation between two charges is increased, the electric potential energy of the charges
1) increases
2) Remains the same
3) decreases
4) May increase or decrease
7. Choose the wrong statement
1) An equipotential surface is normal to electric field lines
2) potential increases in the direction of electric field
3) We may have zero potential but non zero electric field at a point in space
4) Potential is a scalar quantity
8. Out of the following two statements
A) As we move in the direction of the field potential goes on decreasing
B) If a charged body is moved within the field work must be done by field.
1) A is correct and B is wrong
2) Both A and B are correct
3) A is wrong and B is correct
4) Both A and B are wrong
9. Potential at the point of a pointed conductor is
1) Maximum
2) Same as at any other point
3) Zero
4) Minimum
10. Out of the following two statements
A) three charge system can not have zero mutual potential energy
B) The mutual potential energy of a system of charges is only due to positive charges
1) A is wrong and B is correct
2) Both A and B are correct
3) A is correct and B is wrong
4) Both A and B are wrong
11. If two conducting spheres are separately charged and then brought into contact
1) The total energy of the spheres is conserved
2) The total charge on the spheres is conserved
3) Both the total energy and charge are conserved
4) The final potential is always the mean of the original potential of the two spheres
12. Electric potential at some point in space is zero. Then at that point 1) electric intensity is necessarily zero
2) electric intensity is necessarily non zero
3) electric intensity may or may not be zero
4) electric intensity is necessarily infinite
13. At each corner of an equilateral triangle identical charges are placed. Then
1) at the centre of the triangle the resultant electric intensity is zero
2) at the centre of the triangle the net electric potential is zero
3) the electrostatic potential energy of the system is zero
4) the resultant electric intensity at any corner is zero
14. On the perpendicular bisector of an electric dipole, the electric intensity E and potential V are
1) $E=0, V=0$
2) $\mathrm{E} \neq 0, \mathrm{~V} \neq 0$
3) $\mathrm{E} \neq 0, \mathrm{~V}=0$
4) $\mathrm{E}=0, \mathrm{~V} \neq 0$
15. When an electron approaches a proton, their electrostatic potential energy
1) decreases
2) Remains unchanged
3) increases
4) All the above
16. The mutual electric potential energy of two negatively charged particles are U_{1} and U_{2} when their distances of separation are d_{1} and $\mathrm{d}_{\mathbf{2}}$ respectively. If $d_{\mathbf{2}}>\mathrm{d}_{\mathbf{1}}$, then
1) $U_{1}>U_{2}$
2) $U_{1}<U_{2}$
3) $\mathrm{U}_{1}=\mathrm{U}_{2}$
4) cannot be decided
17. If an earthed plate is brought near positively charged plate, the potential and capacity of charged plate
1) increases, decreases
2) decreases, decreases
3) decreases, increases
4) increases, increases
18. At a point in space the electric field points towards north. In the region surrounding this point the rate of change of potential will be zero along
1) North
2) South
3) North south
4) East west
19. Two charged spheres of radii 10 cm and 15 cm are connected by a thin wire. No current will flow if they have
1) the same charge on each
2) the same potential
3) the same field on their surface
4) the same energy
20. An electron and a proton move through a potential difference of 200V. Then
1) electron gains more energy
2) both gain same energy
3) proton gains more energy
4) none gain energy
21. An electron of mass m and charge e is accelerated from rest through a potential difference V in vacuum. Its final speed will be
1) $\sqrt{\frac{2 e V}{m}}$
2) $\sqrt{\frac{e V}{m}}$
3) $\frac{e V}{2 m}$
4) $\frac{e V}{m}$
22. Four identical charges each of charge \mathbf{Q} are placed at the corners of a square. Then at the centre of the square the resultant electric intensity E and the net electric potential V are
1) $\mathrm{E} \neq 0, V=0$
2) $\mathrm{E}=0, \mathrm{~V} \neq 0$
3) $\mathrm{E}=0, \mathrm{~V}=0$
4) $\mathrm{E} \neq 0, \mathrm{~V} \neq 0$

23. Electric potential on the surface of a hollow conducting sphere is \mathbf{V}. The electric potential is $\frac{V}{2}$ at a distance
1) $R / 2$ inside the sphere
2) $R^{2} / 2$ from the surface of the sphere and outside it
3) $2 R$ from the centre of the sphere
4) $2 R$ from the surface of the sphere and outside it
24. A charge \mathbf{Q} is at the centre of a semicircle of diameter AB. If work done in moving a charge q along the semicircle is W_{1} and work done in moving the same charge q along the path $A C B$ is \mathbf{W}_{2}, then
1) $W_{1}>W_{2}$
2) $W_{1}<W_{2}$
3) $W_{1}=W_{2}=0$
4) $W_{1}=W_{2} \neq 0$
25. A charge \mathbf{Q} is placed at one corner \mathbf{A} of a square $\mathbf{A B C D}$. Its centre is 0. A test charge \mathbf{q} is moved along three paths namely $\mathbf{B C}, \mathrm{BCD}$ and BOD doing the works W_{1}, W_{2} and W_{3} respectively. Then
1) $W_{1}=W_{2}=W_{3}=$ zero
2) $W_{1}>W_{2}>W_{3}$
3) $W_{1} \neq 0$ and $W_{2}=W_{3}=0$
4) $W_{1}<W_{2}<W_{3}$

26. In hydrogen atom electron of charge -e and mass m revolves round the nucleus in a circular orbit of radius r. The electrostatic potential energy of the electron is $\frac{1}{4 \pi \epsilon_{0}}$ times
1) $\frac{-e}{r}$
2) $\frac{-e^{2}}{r}$
3) $\frac{e^{2}}{r}$
4) $\frac{-m e^{2}}{r}$
27. In the electric field of a point charge \mathbf{Q} a certain charge is carried from point A to B, C, D and E. Then the workdone is (Q is at the centre of the circle)
1) least along the path $A B$
2) least along the path AD
3) zero along any one of the paths $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$ and AE
4) least along AE
28. Two conducting spheres of radii r_{1} and r_{2} are at the same potential. Their charges are in the ratio of
1) $\frac{r_{2}}{r_{1}}$
2) $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
3) $\frac{r_{1}}{r_{2}}$
4) $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
29. A condenser is charged to a potential V by connecting it to a battery. If the charge on the condenser is \mathbf{Q}
1) the energy stored in the condenser is $1 / 2 \mathbf{Q V}$
2) work done by the battery during charging is $1 / 2 \mathrm{QV}$
3) work done by the battery during charging is QV
4) both (1) and (3) are true
30. Identify the correct order in which the gain in kinetic energies increases in the following cases
i) Alpha particle accelerated through a P.D of 2V
ii) Proton accelerated through a P.D of 2 V
iii) Deutron accelerated through a P.D of 3V
iv) Electron accelerated through a P.D of 5V
1) ii, iii, i and iv
2) iii, iv, i and ii
3) iv, ii, i and iii
4) i, iii, ii and iv
31. When a charged particle of charge ' q ' and mass ' m ' is accelerated through a P.D of V. Then the velocity (v) acquires by it is
a) $v \propto q$
b) $\mathbf{v} \propto \mathrm{m}^{-1 / 2}$
c) $\mathbf{v} \propto \mathbf{V}$
d) $\mathbf{v} \propto \mathbf{q}^{1 / 2}$
1) b is correct
2) Both band care correct
3) Both b and d are correct
4) a and c are correct
32. When ' n ' identical drops each of potential V coalesce to form a bigger drop of potential ' V_{1} '. Then
a) $\mathbf{v}_{1} \propto \mathrm{n}$
b) $v_{1} \propto n^{2 / 3}$
c) $\mathbf{V}_{1} \propto \mathbf{V}^{2 / 3}$
d) $\mathbf{V}_{1} \propto \mathbf{V}$
1) a and c are correct
2) a and d are correct
3) b and care correct
4) b and d are correct
33. Two concentric spheres of radii R and r have similar charges with equal surface densities (σ). Then electric potential (V) at their common centre is
a) $\mathrm{V} \propto \frac{\sigma}{\epsilon_{0}}$
b) $\mathbf{V} \propto(\mathbf{R}+\mathbf{r})$
c) $\mathbf{V} \propto(\mathbf{R}-\mathbf{r})$
d) $\mathbf{V}_{1} \propto \sigma(R-r)$
1) a and b are correct
2) a and care correct
3) b and d are correct
4) \mathbf{a} is correct
34. Match list-I with List-II

LIST - I

a) Electric potential inside a charged conducting sphere
b) Electric potential outside conducting charged sphere
c) Dlectric field inside the non conducting charged sphere

LIST - II
e) Inversely proportional to square of the distance (\mathbf{r}^{2})
f) Directly proportional to distance (r) from the centre
g) constant
d) Electric field outside a \quad h) Inversely proportional to distance (r) conducting charged sphere

1) $\mathbf{a}-\mathbf{f}, \mathrm{b}-\mathrm{e}, \mathrm{c}-\mathrm{g}, \mathrm{d}-\mathrm{h}$
2) $\mathbf{a}-\mathrm{e}, \mathrm{b}-\mathrm{f}, \mathrm{c}-\mathrm{h}, \mathrm{d}-\mathrm{g}$
3) $\mathbf{a}-\mathrm{h}, \mathrm{b}-\mathrm{g}, \mathrm{c}-\mathrm{e}, \mathrm{d}-\mathbf{f}$
4) $\mathbf{a}-\mathrm{g}, \mathrm{b}-\mathrm{h}, \mathrm{c}-\mathrm{f}, \mathrm{d}-\mathrm{e}$
35. Match list-I with List-II

LIST - I

a) Two like charges are brought nearer
b) Two unlike charges are brought nearer
c) When a third charge not of same nature is placed equidistant from two like charges

LIST - II

e) The force between them decreases
f) Potential energy of the system increases
g) Mutual forces are affected
d) When a dielectric medium is introduced between two charges

1) $\mathbf{a}-\mathrm{h}, \mathrm{b}-\mathrm{f}, \mathrm{c}-\mathrm{g}, \mathrm{d}-\mathrm{e}$
2) $\mathbf{a}-\mathbf{f}, \mathrm{b}-\mathrm{h}, \mathrm{c}-\mathrm{g}, \mathrm{d}-\mathrm{e}$
3) $\mathbf{a}-\mathrm{h}, \mathrm{b}-\mathrm{f}, \mathrm{c}-\mathrm{e}, \mathrm{d}-\mathrm{g}$
4) $\mathbf{a}-\mathrm{g}, \mathrm{b}-\mathrm{e}, \mathrm{c}-\mathrm{f}, \mathrm{d}-\mathrm{h}$
h) Potential energy of the system decreases
36. Match list-I with List-II

LIST - I

a) Electric potential due to a point charge $\mathbf{V}=$
b) Electric field intensity $\mathrm{E}=$
c) Electric potential V =
d) Electro static potential energy

LIST - II
e) $\vec{E} \cdot \vec{r}$
f) Eqd
g) $\frac{Q}{4 \pi \epsilon_{0} r}$
h) $-\frac{d v}{d x}$
37. Match list-I with List-II

LIST - I

a) Electric energy is stored in the capacitor
b) Capacity of capacitor when dielectric between the plates with disconnecting the battery
c) Potential difference between the plates of capacitor when dielectric medium is inserted between the plates with disconnecting the battery

LIST - II

e) decreases
f) In the electric field between the plates
g) Remains same
d) Charge on the capacitor when dielectric
h) increases medium is inserted between the plates of the capacitor with disconnecting the battery

1) $\mathbf{a}-\mathrm{h}, \mathrm{b}-\mathrm{f}, \mathrm{c}-\mathrm{g}, \mathrm{d}-\mathbf{c}$
2) $\mathbf{a}-\mathbf{f}, \mathbf{b}-\mathbf{g}, \mathbf{c}-\mathbf{e}, \mathbf{d}-\mathbf{h}$
3) $\mathbf{a}-\mathbf{f}, \mathrm{b}-\mathrm{h}, \mathrm{c}-\mathrm{e}, \mathbf{d}-\mathrm{g}$
4) $\mathbf{a}-\mathrm{g}, \mathrm{b}-\mathrm{f}, \mathrm{c}-\mathrm{e}, \mathrm{d}-\mathrm{h}$
38. Statement I : When a proton with certain energy moves from low potential to high potential then its KE decreases. Statement II : The direction of electric field is opposite to the potential gradient
1) Statement I is true, Statement II true, statement II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
39. Statement I : When Proton and α - particle which are initially at rest are accelerated by same electric field for the same time interval, debroglie wavelength for α particle is less than that of proton. Statement II : In the given electric field to get particular momentum the time of acceleration is inversely proportional to charge
1) Statement I is true, Statement II true, statement II
is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
40. Statement I : Proton and duetron are projected with same velocity normal to the electric field of same strength require different times of travel to acquire velocity of same magnitude. Statement II : In the electric field in getting certain velocity from rest, the time of acceleration is inversely proportional to specific charge of the particle.
1) Statement I is true, Statement II true, statement II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
41. Statement I : A circle is drawn with a point positive charge $(+q)$ at its centre. The work done in taking a unit positive charge once around it is zero
Statement II : Displacement of unit positive charge is zero
1) Statement I is true, Statement II true, statement II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
42. Statement I : When two charged spheres are connected by a conducting wire, the charge flows from smaller sphere to larger sphere. Statement II : Smaller sphere is at high potential when equal charges are imparted to both the spheres
1) Statement I is true, Statement II true, statement

II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
43. Statement I : Electric potential at any point on the equatorial line of electric dipole is zero.
Statement II : Electric potential is scalar

1) Statement I is true, Statement II true, statement

II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
44. Statement I : In bringing an electron towards a proton electrostatic potential energy of the system increases.
Statement II : Potential due to proton is positive.

1) Statement I is true, Statement II true, statement II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
45. Statement I : The surface of a conductor is an equipotential surface Statement II : Conductor allows the flow of charge
1) Statement I is true, Statement II true, statement II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
46. Statement I : When charge is shared between two conductors then there is no loss of charge, but there is loss of electrostatic energy Statement II : Law of conservation of energy fails.
1) Statement I is true, Statement II true, statement II is the correct explanation for statement I
2) Statement I is true, Statement II true, statement II is not the correct explanation for statement I
3) Statement I is true, Statement II is false
4) Statement I is false, Statement II is true.
