	V PLUS U	A Tr EE–Ma	usted Institute of in Advance NEET	DF	P-2
SUE	JECT : TOPIC: COULOMB	'S LAW		TIME:	DATE:
1.	 When the distance between the charged particles halved, the force between them becomes (a) One-fourth (b) Half (c) Double (d) Four times 	is 6.	Two small spheres e suspended by insulati hook. This arrangemen no gravitational effect suspensions and the ter	ach having the ng threads of it is taken in sp , then the angle asion in each w	e charge $+Q$ are length <i>L</i> from a bace where there is e between the two ill be
2.	F_g and F_e represents gravitational and electrosts force respectively between electrons situated at distance 10 <i>cm</i> . The ratio of F_g/F_e is of the order of (a) 10^{42} (b) 10 (c) 1 (d) 10^{-43}	atic a 7.	(a) $180^{\circ}, \frac{1}{4\pi\varepsilon_0} \frac{\alpha}{(2L)^2}$ (c) $180^{\circ}, \frac{1}{4\pi\varepsilon_0} \frac{Q^2}{2L^2}$ +2C and +6C two chas a force of $12N$. If eac	(b) 90°, $\frac{1}{43}$ (d) 180°, $\frac{1}{2}$ rges are repelli ch charge is giv	$\frac{1}{\pi\varepsilon_0} \frac{Q^2}{L^2}$ $\frac{1}{4\pi\varepsilon_0} \frac{Q^2}{L^2}$ ng each other with the -2C of charge,
3.	Four charges are arranged at the corners of a square $ABCD$, as shown in the adjoining figure. The force the charge kept at the centre O is	are on	then the value of the fo(a) 4N (Attractive)(c) 8N (Repulsive)	rce will be (b) 4N (R (d) Zero	Repulsive)
	$\begin{array}{c} A \\ +q \\ -2q \\ D \end{array}$	8.	Dielectric constant of will be (a) 7.12×10^{-10} MKS to (c) 1.02×10^{13} MKS un	pure water is 8 inits (b) 8.86× inits (d) Canno	31. Its permittivity 10 ^{–12} <i>MK</i> S units of be calculated
AB	 (a) Zero (b) Along the diagonal A (c) Along the diagonal BD (d)Perpendicular to s 	C 9.	Three equal charges are square. If the force be between q_1 and q_3 is is	e placed on the etween q_1 and F_{13} , the ratio c	three corners of a q_2 is F_{12} and that of magnitudes $\frac{F_{12}}{F_{13}}$
4.	In the absence of other conductors, the surface char density (a) Is proportional to the charge on the conductor and surface area	rge its	(a) $1/2$ (c) $1/\sqrt{2}$	(b) 2 (d) $\sqrt{2}$	
	(b) Inversely proportional to the charge and direct proportional to the surface area(c) Directly proportional to the charge and inverse proportional to the surface area(d) Inversely proportional to the charge and surface area	ely the	Two charges q_1 and distance <i>d</i> and the formedium of dielectric them, the force now with (a) $4F$ (c) $\frac{F}{2}$	q_2 are placed ce acting betwee constant 4 is fill ll be (b) $2F$ (d) $\frac{F}{4}$	in vacuum at a een them is <i>F</i> . If a introduced around
5.	Out of gravitational, electromagnetic, Vander Wa electrostatic and nuclear forces; which two are able provide an attractive force between two neutrons (a) Electrostatic and gravitational (b) Electrostatic and nuclear (c) Gravitational and nuclear (d) Some other forces like Vander Waals	als, to 11	• A force <i>F</i> acts between (sodium chloride) which permittivity of air and ε_0 and <i>K</i> respectively water electrical force chlorine ions 1 <i>cm</i> apart (a) $\frac{F}{K}$	n sodium and c ien put $1cm$ dielectric con y. When a piec e acting betw t is (b) $\frac{FK}{\varepsilon_0}$	hlorine ions of salt apart in air. The stant of water are ce of salt is put in veen sodium and

V PLUS U	А Т JEE-М	Frusted Institute of Lain Advance NEET	DP	P-2
SUBJECT : TOPIC: CC	OULOMB'S LAW	V	TIME:	DATE:
(c) $\frac{F}{K\varepsilon_0}$ (d) $\frac{F\varepsilon_0}{K}$		 (a) 0.9 N (c) 2.7 N 	(b) 1.8 N(d) 3.6 N	
 12. Two similar spheres having +q and -q charge at a certain distance. F force acts between the middle of two spheres, another simil having +q charge is kept, then it experience magnitude and direction as (a) Zero having no direction (b) 8F towards +q charge (c) 8F towards -q charge (d) 4F towards +q charge 	ge are kept 1 e two. If in lar sphere a force in 1	 8. Two charges each equ of them exist inside them is (a) 1.89 N (c) 0.144 N 9. Two copper balls, each cm apart. If one eleat transferred from one be between them is (atom 	al to $2\mu C$ are 0.5 vacuum, then the (b) 2.44 N (d) 3.144 N h weighing 10g and ctron from every all to the other, the ic weight of coppo	<i>m</i> apart. If both force between re kept in air 10 \times 10 ⁶ atoms is e coulomb force er is 63.5)
13. A charge Q is divided into two parts of q and the coulomb repulsion between them when separated is to be maximum, the ratio of $\frac{Q}{q}$ shows (a) 2 (b) $1/2$ (c) 4 (d) $1/4$	d $Q-q$. If n they are ould be 2	 (a) 2.0×10¹⁰ N (c) 2.0×10⁸ N 20. A solid conducting spl charge 2Q. A conducti b and outer radius c i and has a net charge – the inner and outer sur 	(b) 2.0×10^4 (c) 2.0×10^6 (c) 2.0×10^6 (c) a have a fine spherical shell so concentric with Q . The surface of the spherical sphere Q is the sphere a of the sphere a	N N as a net positive I of inner radius the solid sphere narge density on cal shell will be
 14. When air is replaced by a dielectric medium of k, the maximum force of attraction bet charges separated by a distance (a) Decreases k times (b) Remains unch (c) Increases k times (d) Increases k⁻¹ 	of constant ween two anged times	(a) $-\frac{2Q}{4\pi b^2}, \frac{Q}{4\pi c^2}$ (b) $-\frac{Q}{4\pi b^2}, \frac{Q}{4\pi c^2}$ (c) $0, \frac{Q}{4\pi c^2}$ (d) None of the above		
 15. The force between two charges 0.06m apart each charge is moved towards the other by 0 the force between them will become (a) 7.20N (b) 11.25N (c) 22.50N (d) 45.00N 	is $5N$. If 0.01 <i>m</i> , then 2	(d) None of the abov 21. Two charges placed in $10^{-4}N$. When oil is int force becomes $2.5 \times 10^{\circ}$ is (a) 2.5 (c) 2.0	air repel each oth troduced between ⁻⁵ N. The dielectri (b) 0.25 (d) 4.0	her by a force of the charges, the c constant of oil
16. Two charged spheres separated at a distance force F on each other. If they are immersed of dielectric constant 2, then what is the for conditions are same)(a) $\frac{F}{2}$ (b) F(c) 2F(d) 4F	e d exert a in a liquid prce (if all 2	22. Three charges are plac triangle of side 'a' as The force experienced A in a direction normal (a) $Q^2/(4\pi\epsilon_0 a^2)$	ed at the vertices of s shown in the for by the charge place to <i>BC</i> is $+Q \bigoplus_{i=1}^{A}$	of an equilateral ollowing figure. ced at the vertex
17. Electric charges of $1\mu C_{,-} 1\mu C$ and $2\mu C$ are pl at the corners <i>A</i> , <i>B</i> and <i>C</i> respectively of an triangle <i>ABC</i> having length of each side 1 resultant force on the charge at <i>C</i> is	aced in air equilateral 0 <i>cm</i> . The	(b) $-Q^2/(4\pi\epsilon_0 a^2)$ (c) Zero (d) $Q^2/(2\pi\epsilon_0 a^2)$	$-Q \bigoplus_{B} a$	C+Q

resultant force on the charge at C is

V PLUS U	A Trusted Institute of JEE–Main Advance NEET	

DPP-2

DATE:

SUBJECT :

TIME:

- **23.** Two particle of equal mass m and charge q are placed at a distance of 16 cm. They do not experience any force. The value of $\frac{q}{m}$ is
 - (b) $\sqrt{\frac{\pi\varepsilon_0}{G}}$ (a) *l* (c) $\sqrt{\frac{G}{4\pi\varepsilon_0}}$ (d) $\sqrt{4\pi\varepsilon_0 G}$
- 24. An electron is moving round the nucleus of a hydrogen atom in a circular orbit of radius r. The coulomb force \vec{F} between the two is (Where $K = \frac{1}{4\pi\epsilon_0}$)
 - (a) $-K\frac{e^2}{r^3}\hat{r}$ (b) $K \frac{e^2}{r^3} \vec{r}$ (c) $-K\frac{e^2}{r^3}\vec{r}$ (d) $K \frac{e^2}{r^2} \hat{r}$
- 25. A body has 80 micro coulomb of charge. Number of additional electrons in it will be
 - (a) 8×10^{-5} (b) 80×10^{-17} (c) 5×10^{14} (d) 1.28×10^{-17}
- 26. Two spherical conductors B and C having equal radii and carrying equal charges in them repel each other with a force F when kept apart at some distance. A third spherical conductor having same radius as that of B but uncharged is brought in contact with B, then brought in contact with C and finally removed away from both. The new force of repulsion between B and C is
 - (b) 3*F*/4 (a) F/4(d) 3F/8(c) F/8
- 27. The charges on two sphere are $+7\mu C$ and $-5\mu C$ respectively. They experience a force F. If each of them is given and additional charge of $-2\mu C$, the new force of attraction will be

(a) <i>F</i>	(b) <i>F</i> / 2
(c) $F / \sqrt{3}$	(d) 2 <i>F</i>

28. The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance

 5×10^{-11} m, will be (Charge on electron = 1.6×10^{-19} C, mass of electron = 9.1×10^{-31} kg, mass of proton = 1.6×10^{-27} kg, $G = 6.7 \times 10^{-11} Nm^2 / kg^2$

(a) 2.36×10^{39}	(b) 2.36×10^{40}
(c) 2.34×10^{41}	(d) 2.34×10^{42}

29. Two equally charged, identical metal spheres A and B repel each other with a force 'F'. The spheres are kept fixed with a distance 'r' between them. A third identical, but uncharged sphere C is brought in contact with A and then placed at the mid-point of the line joining A and B. The magnitude of the net electric force on C is

(a) <i>F</i>	(b) 3 <i>F</i> /4
(c) <i>F</i> /2	(d) <i>F</i> /4

30. An infinite number of charges, each of charge 1 μ C, are placed on the x-axis with co-ordinates x = 1, 2, 4, 8, ∞ . If a charge of 1 C is kept at the origin, then what is the net force acting on 1 C charge

(a)	9000	N ((b)	12000	N
(c)	24000	ON ((d)	36000	N

V PLUS U

A Trusted Institute of JEE-Main | Advance | NEET

DATE:

SUBJECT :

TOPIC: COULOMB'S LAW

TIME:

РНҮ					
DPP - 2					
Q.	Ans.	Q.	Ans.		
1	D	26	D		
2	D	27	Α		
3	С	28	Α		
4	С	29	Α		
5	С	30	В		
6	Α				
7	D				
8	Α				
9	В				
10	D				
11	Α				
12	С				
13	Α				
14	Α				
15	В				
16	Α				
17	В				
18	C				
19	C				
20	Α				
21	D				
22	С				
23	D				
24	C				
25	C				