1. A small block is connected to one end of two identical massless strings of length $16 \frac{2}{3} \mathrm{~cm}$ each with their other ends fixed to a vertical ro(d If the ratio of tensions $\frac{T_{1}}{T_{2}}$ be $4: 1$, then what will be angular speed ω of the block?
(a) $10 \mathrm{rad} / \mathrm{s}$
(b) $14 \mathrm{rad} / \mathrm{s}$
(c) $15 \mathrm{rad} / \mathrm{s}$
(d) $20 \mathrm{rad} / \mathrm{s}$

2. A particle of mass m is fixed to one end of a light spring of force constant k and unstretched length 1 . The system is rotated about the other end of the spring with an angular velocity ω In gravity free space. The increase in length of the spring will be
(a) $\frac{m \omega^{2} l}{k}$
(b) $\frac{m \omega^{2} l}{k-m \omega^{2}}$
(c) $\frac{m \omega^{2} l}{k+m \omega^{2}}$
(d) None of these
3. A smooth wire is bent into a vertical circle of radius (a) A bead P can slide smoothly on the wire. The circle is rotated about diameter $A B$ as axis with a speed ω as shown in figure. The bead P is at rest with respect to the circular ring in the position shown. Then, ω is equal to A
(a) $\left(\frac{2 g}{a}\right)^{1 / 2}$
(b) $\left(\frac{2 g}{\sqrt{3} a}\right)^{1 / 2}$
(c) $\left(\frac{\sqrt{3} g}{a}\right)^{1 / 2}$
(d) $\left(\frac{g}{2 a}\right)^{1 / 2}$

4. A train A runs from east to west and another train B of the same mass runs from west to east at the same speed with respect to earth along the equator. Normal force by the track on train A is N 1 and that on train B is N_{2}
(a) $\mathrm{N}_{1}>\mathrm{N}_{2}$
(b) $\mathrm{N}_{1}<\mathrm{N}_{2}$
(c) $\mathrm{N}_{1}=\mathrm{N}_{2}$
(d) the information is insufficient to find the relation between N_{1} and N_{2}.
5. A bead can slide along a straight rod The friction coefficient between them is μ. At a certain moment $t=0$, the rod starts rotating about a perpendicular axis passing through its end At this moment, the bead is at distance ' r ' from the rotation axis. The space is free of gravity. The angular velocity of the rod at any time t is $\omega=\alpha t^{2}$, where ' α ' is a positive constant. The value of time t when the bead begins to move is
(a) infinite
(b) $\left(\frac{4 \mu}{\alpha}\right)^{2 / 3}$
(c) $\left(\frac{\mu}{\alpha}\right)^{1 / 3}$
(d) $\left(\frac{2 \mu}{\alpha}\right)^{1 / 3}$
6. A body is thrown with the velocity $u=10 \mathrm{~m} / \mathrm{s}$ at an angle of $\theta=37^{\circ}$ from the horizontal on a horizontal plane. Find the angular velocity of the body as observed from the point of projection at the time of landing.
(a) $\frac{5}{8} \mathrm{rad} / \mathrm{s}$
(b) $\frac{5}{6} \mathrm{rad} / \mathrm{s}$
(c) $\frac{5}{3} \mathrm{rad} / \mathrm{s}$
(d) None of these
7. A jet travelling at a constant speed of $432 \mathrm{~km} / \mathrm{h}$ executes a vertical loop with a radius of 500 m . Find the magnitude of the force of the seat on a 70 kg pilot at the top of the loop. ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(a) 1316 N
(b) 2716 N
(c) 700 N
(d) 2000 N
8. A small body A of mass m slides inside a large hemispherical bowl of radius R as shown in figure. If the body starts from rest at the top point A of the hemisphere, find the normal force exerted by the hemisphere on the body when it is at point B of the hemisphere.
(a) $\frac{m g}{2}$
(b) mg
(c) $\frac{3 m g}{2}$
(d) 2 mg

9. Three identical particles are joined together by a thread as shown in figure. All the three particles are moving on a smooth horizontal plane about point O .
If the speed of the outermost particle is v_{0}, then the ratio of tensions in the three sections of the string is (Assume that the string remains straight)
(a) $3: 5: 7$
(b) $3: 4: 5$
(c) $7: 11: 6$
(d) $3: 5: 6$

10. A circular platform rotates around a vertical axis with angular velocity of $10 \mathrm{rad} / \mathrm{s}$. On the platform is a ball of mass 1 kg , attached to the long axis of the platform by a thin rod of length 10 cm . Find normal force exerted by the ball on the platform (in N). $\left(\alpha=30^{\circ}\right)$ Friction is absent.

11. If angular velocity of a disc depends an angle rotated θ as $\omega=\theta^{2}+2 \theta$, then find its angular acceleration $\alpha\left(\right.$ in $\left.\mathrm{rad} / \mathrm{s}^{2}\right)$ at $\theta=\mathbf{1} \mathbf{r a d}$
12. A body is thrown with a velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal at $t=0$. Find the radius of curvature (in m) of its trajectory at $t=\frac{1}{\sqrt{2}} \mathrm{~s}$ after the body began to move.
13. A stone is projected from level ground at $t=0 \mathrm{~s}$, such that its horizontal and vertical components of initial velocity are $10 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{~m} / \mathrm{s}$, respectively. Then, find the instant of time at which magnitude of tangential and magnitude of normal components of acceleration of stone are same. (Neglect air resistance) $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
