1. Velocity v of a particle moving along X-axis varies as $v=\sqrt{(8 x-5)} m / s$. Find acceleration of the particle.
2. The instantaneous velocity of a particle varies with position x as $\quad v=2 x+7$. Assuming that particle was at origin at $\mathrm{t}=0$, find the relation between x and t.
3. For a particle moving along $+X$-axis, acceleration is given as $a=6 x+5$. Find the velocity as a function of position? Given that, initially particle is at origin and moving with velocity $2 \mathrm{~m} / \mathrm{s}$.
4. For a particle moving along X-axis, acceleration is given as $a=v$. Find the position as a function of time. Given that, at $t=0, x=0$ and $v=2$.
5. For a particle moving along X-axis, acceleration is given as $a=2 v^{2}$. If the speed of the particle is v_{0} at $x=0$, then find speed as a function of x.
6. An object moving with a speed of $5 \mathrm{~m} / \mathrm{s}$ is decelerated at a rate given by $\frac{d v}{d t}=-\frac{1}{30} v^{2}$, where v is the instantaneous speed. The time (in s) when its speed become $3 \mathrm{~m} / \mathrm{s}$ is
7. The motion of a body in given by the equation $\frac{d v}{d t}=6-3 \mathrm{v}$, where v is speed in m / s and t is time in second. If the body was at rest at $t=0$ its terminal velocity ($\operatorname{In} \mathbf{m} / \mathrm{s}$) is ...
8. The acceleration of a particle moving rectilinearly varies with the magnitude of its velocity as $a=-\sqrt{v}$. Find its initial speed (in m / s) if it stops after $\boldsymbol{t}_{\boldsymbol{0}}=\mathbf{4}$ from starting.
9. A particle is projected with velocity v_{0} along X-axis. The deceleration of the particle is proportional to the square of the distance from the origin, i.e. $a=\alpha x^{2}$. The distance at which the particle stops is
(a) $\sqrt[3]{\frac{3 v_{0}^{2}}{\alpha}}$
(b)
(c) $\sqrt[3]{\frac{3 v_{0}^{2}}{2 \alpha}}$
(d) $\sqrt[3]{\frac{v_{0}^{2}}{\alpha}}$
10. The velocity v of a moving particle varies with displacement as $x=\sqrt{v+1}$, the acceleration of the particle at $x=5$ unit will be
(a) $\sqrt{6}$ Unit
(b)
24 Unit
(c) 240 Unit
(d) 25 Unit
11. For the motion of a particle, velocity v depends on displacement x as $v=\frac{20}{3 x-2}$. If at $t=0$, $x=0$, then at what time $t, x=20$?
(a) 7 s
(b) 14 s
(c) 28 s
(d) 35 s
12. In the one-dimensional motion of a particle, the relation between position x and time t is given by $x^{2}+2 x=t$. Choose the correct statement.
(a) The retardation of the particle is $\frac{1}{4(x+1)^{3}}$
(b) The acceleration of the particle is $\frac{1}{(x+1)^{3}}$
(c) The uniform velocity of the particle is $\frac{1}{(x+1)^{3}}$
(d) The particle has an acceleration of $4 \mathbf{t}+6$.
13. The velocity of a particle moving along positive X-axis varies as $v=\boldsymbol{\alpha} \sqrt{\boldsymbol{x}}$, where $\boldsymbol{\alpha}$ is a constant. If particle is at $x=0$ at $t=0$, what will be the average velocity of particle during the time, it moves a distance s ?
(a) $\frac{\alpha}{2} \sqrt{s}$
(b) $\frac{2}{\alpha} \sqrt{s}$
(c) $\alpha \sqrt{s}$
(d) $\frac{\sqrt{s}}{\alpha}$
14. The velocity of a particle moving in the positive direction of the X-axis varies as $v=$ $\alpha \sqrt{x}$, where α is a positive constant. Assuming that at the moment $t=0$, the particle was located at the point $x=0$, find the time dependence of velocity.
(a) $v=\frac{\alpha^{2} t}{2}$
(b) $\mathrm{v}=\alpha^{2} t$
(c) $\quad v=\frac{\alpha t}{2}$
(d) $\mathbf{v}=\boldsymbol{\alpha} \mathrm{t}$
15. The deceleration experienced by a moving motor boat, after its engine is cut off is given by $\frac{d v}{d t}=-k v^{3}$, where k is constant. If v_{0} is the magnitude of the velocity at cut-off, the magnitude of the velocity at a time t after the cut-off is
(a) $\frac{v_{0}}{2}$
(b) v_{0}
(c) $\quad v_{0} e^{-k / t}$
(d) $\frac{v_{0}}{\sqrt{2 v_{0}^{2} k t+1}}$
16. If the velocity of a particle is given by $v=(180-16 x)^{1 / 2} \mathrm{~m} / \mathrm{s}$, then its acceleration will be
(a) $0.5 \mathrm{~m} / \mathrm{s}^{2}$
(b) $8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $-8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4 \mathrm{~m} / \mathrm{s}^{2}$
17. The displacement x of a particle varies with time $t, x=a e^{-\alpha t}+b e^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will
(a) go on decreasing with time
(b) be independent of α and β
(c) drop to zero when $\alpha=\beta$
(d) go on increasing with time
18. A point moves in a straight line with retardation d which depends on velocity of particle v as $d=\mathbf{C} \sqrt{v}$, where C is a positive constant. If initial velocity of the particle is v_{0}, then total distance travelled by the particle before stopping is
(a) $\frac{3}{3 C} v_{0}^{1 / 2}$
(b) $\frac{3}{3 c} v_{0}^{3 / 2}$
(c) $\frac{2}{c} v_{0}^{3 / 2}$
(d) $\frac{v_{0}}{c}$
19. A particle moves in the $x y$-plane and its coordinates are given by $x=k \sin \omega t$ and $y=$ $k(1-\cos \omega t)$, where k and ω are constants. What is the magnitude of acceleration of the particle?
(a) Zero
(b) $\mathrm{k} \omega$
(c) $\mathbf{k} \boldsymbol{\omega}^{2}$
(d) $\mathbf{k}^{2} \omega$
20. The relation $3 t=\sqrt{3 x}+6$ describes the displacement of a particle in one direction, where x is in metre and t in second. The displacement, when velocity is zero, is
(a) 25 m
(b) 12 m
(c) 5 m
(d) zero
21. The position vector of a particle is given as $r=\left(t^{2}-4 t+6\right) \hat{\imath}+\left(t^{2}\right) \hat{j}$. The time after which the velocity vector and acceleration vector becomes perpendicular to each other is equal to
(a) 1 s
(b) 2 s
(c) $\quad 1.5 \mathrm{~s}$
(d) Not possible
