

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302

- 6. Two blocks A and B with masses 4 kg and 6 kg respectively are connected by a stretched spring of negligible mass as in figure. When the two blocks are released simultaneously, the initial acceleration of B is 1.5 m/s² westward. The acceleration of A is
 - (a) 1 m/s^2 , westward

(c) 1 m/s^2 , eastward

(b) 2.25 m/s², eastward (d) 2.75 m/s², westward

- 7. A cylinder rests in a supporting carriage as shown. The side AB of carriage makes an angle 30° with the horizontal and side BC is vertical. The carriage lies on a fixed horizontal surface and is being pulled towards left with a horizontal acceleration a. The magnitude of normal reactions exerted by sides AB and BC of carriage on the cylinder be N_{AB} and N_{BC}, respectively. Neglect friction everywhere. Then, as the magnitude of acceleration a of the carriage is increased, pick up the correct statement.
 - (a) N_{AB} increases and N_{BC} decreases. (b) Both N_{AB} and N_{BC} increase.
 - (c) N_{AB} remains constant and N_{BC} increases. (d) N_{AB} increases and N_{BC} remains constant.

8. A man uses two pulleys to raise himself with an acceleration 2 m/s², as in figure. Man stands on a light weighing machine fitted in horizontal platform. Determine the reading of weighing machine.

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302

			A Trusted Ins	stitute of	
	V PL	USU	JEE–Main Adva	ance NEET	DPP-4
SUBJEC	Τ:	TOPIC: New	wtons Law Revision	TIME:	DATE:
9.	What should be the minimum force P to be applied to the string, so that block of mass m just begins to move up the frictionless plane?				
	(a) Mg $\tan \frac{\theta}{2}$	(b) Mg $\cot \frac{\theta}{2}$	(c) $\frac{Mg \cos\theta}{1+\sin\theta}$	(d) None of	these
	M	л л —			
10.	A mass m ₁ , placed on top of a trolley of mass m ₃ , is connected to another mass m ₂ by means of a string passing over a smooth pulley as shown in the figure. The friction between surfaces is negligible. For m ₁ and m ₂ not to move with respect to trolley, the horizontal force F to be applied on trolley is (a) $F = m_3 g$ (b) $F = (m_1+m_2)g$ (c) $F = (m_1+m_2+m_3)\frac{m_2g}{m_1}$ (d) $F = m_1g$				
	$F \longrightarrow m$				
11.	In the figure show (a) 2 ms ⁻²	vn acceleration of monk (b) 4 ms ⁻²	ey relative to the rop (c) 6 ms ⁻²	oe if it exerts a force (d) 8 ms ⁻²	e of 80 N on string will be
	10 kg	2 5 kg			
12.	Two unequal masses are connected on two sides of a light string passing over a light and smooth pulley as shown in figure. The system is released from rest. The larger mass is stopped 1.0 s after the system is set into motion. The time elapsed before the string is tight again is (g = 10 m/s ²) (a) $\frac{1}{s}$ (b) $\frac{1}{s}$ (c) $\frac{2}{s}$ (d) $\frac{1}{s}$				
	··· 4-		(73)	(1)3	

SCO 16-17 HUDA MARKET URBAN ESTATE JIND HARYANA 9053013302

13. A particle of mass m, initially at rest, is acted upon by a variable force F for a brief interval of time T. it begins to move with a velocity u after the force stops acting. F is shown in the graph as a function of time. The curve is a semicircle.

14. Two bodies of masses m_1 and m_2 are connected by a light string which passes over a frictionless, massless pulley. If the pulley is moving upward with uniform acceleration $\frac{g}{2}$, then tension in the string will be

(a)
$$\frac{3m_1m_2}{m_1+m_2}g$$
 (b) $\frac{m_1+m_2}{4m_1m_2}g$ (c) $\frac{2m_1m_2}{m_1+m_2}g$ (d) $\frac{m_1m_2}{m_1+m_2}g$

15. The pulley shown is frictionless. A monkey of mass 1 kg moves up on the massless string, so as to just lift a block of mass 2 kg. After sometime, the monkey stops moving with respect to string. The change in magnitude of monkey's acceleration is

