
1. A force $f=(3 \hat{\imath}+4 \hat{\jmath}) N$ acts on a $2 \mathbf{k g}$ object that moves from an initial position $d_{1}=(-3 \hat{\imath}-2 \hat{\jmath}) \mathrm{m}$ to final position $d_{2}=(5 \hat{\imath}+4 \hat{\jmath}) \mathrm{m}$ in 6 s . What is the average power delivered by the force during the interval?
2. A particle moves with a velocity $v=(5 \hat{\imath}-3 \hat{\jmath}+6 \widehat{k}) \mathrm{m} / \mathrm{s}$ under the influence of a constant force $F=(10 \hat{\imath}+10 \hat{\jmath}+20 \hat{k}) N$. Find the instantaneous power delivered to the particle.
3. A block of mass m is moving with a constant acceleration a on a rough horizontal plane. The coefficient of friction between the block and plane is μ. At time t from the beginning find the power delivered by
(a) gravity
(b) normal force
(c) friction
(d) the external agent
4. A block of mass 2.0 kg is pulled up on a smooth incline of angle 30° with the horizontal. If the block moves with an acceleration of $1.0 \mathrm{~m} / \mathrm{s}^{2}$, find the power delivered by the pulling force at a time 4.0 s after the motion starts.
5. A stone is projected with velocity u at an angle θ with horizontal. Find out
(a) average power of the gravity during time t.
(b) instantaneous power due to gravitational force at time t, where t is time of flight.
6. A water pump lifts water from a level 10 m below the ground. Water is pumped at a rate of $30 \mathrm{~kg} / \mathrm{min}$ with negligible velocity. Calculate the minimum horsepower the engine should have to do this. ($746 \mathrm{~W}=1 \mathrm{HP}$)
7. Power applied to a particle varies with time as $P=\left[3 t^{2}-2 t+1\right] W$, where is time in seconds. What is the change in kinetic energy of particle between time $t=2 s$ to $t=4 s$?
(c) the position is given as a function of time by $s==\left(\frac{8 P}{9 m}\right)^{1 / 2} t^{-3 / 2}$
8. A vehicle of mass M is accelerated on a horizontal frictionless road under a force changing its velocity from u to v in distance s. If a constant power P is given by the engine of the vehicle, then v is

SUBJECT : PHYSICS
(a) $\left(u^{3}+\frac{2 P s}{M}\right)^{1 / 3}$
(b) $\left(\frac{P s}{M}+u^{3}\right)^{1 / 2}$
(c) $\left(\frac{P s}{M}+u^{2}\right)^{1 / 3}$
(d) $\left(\frac{P s}{M}+u^{3}\right)^{1 / 3}$
9. A particle is projected with speed u in air at an angle θ with the horizontal. The graph showing the variation of instantaneous power due to gravity P with time t will be

(a)
(b)
(c)
(d)
10. Water is pumped from a depth of 10 m and delivered through a pipe of cross-section $10^{-2} \mathrm{~m}^{2}$. If it is needed to deliver a volume of $10^{-1} \mathrm{~m}^{3}$ per second the power required will be
(a) 10 kW
(b) 9.8 kW
(c) 15 kW
(d) 4.9 kW
11. A body is moved from rest along a straight line by a machine delivering constant power. The ratio of displacement and velocity varies with time t as

(a)
(b)

(c)

(d)
12. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to ($u=0$)
(a) $t^{1 / 2}$
(b) $\mathrm{t}^{3 / 4}$
(c) $\mathrm{t}^{3 / 2}$
(d) t^{2}
13. A truck of mass 30000 kg moves up an inclined plane of slope 1 in 100 at a speed of $30 \mathrm{~km} / \mathrm{h}$. The power of the truck is (given, $g=10 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}$)
(a) 25 kW
(b) 10 kW
(c) 5 kW
(d) 2.5 kW
14. Two bodies of mass m_{1} and $m_{2}\left(m_{2}>m_{1}\right)$ are connected by a light inextensible string which passes through a smooth fixed pulley. What is the
instantaneous power delivered by an external agent to pull m_{1} with constant velocity v at any instant?
(a) $\left(m_{2}-m_{1}\right) g v$
(b) $\left(m_{2}+m_{1}\right) g v$
(c) $2\left(m_{2}-m_{1}\right) g v$
(d) $2\left(m_{2}+m_{1}\right) g v$

15. A machine gun is firing $\mathbf{6 0}$ bullets per minute with a velocity of $\mathbf{7 0 0} \mathbf{m} / \mathrm{s}$. If each bullet has a mass of 50 g , the power developed by the gun is
(a) 20000 W
(b) 10000 W
(c) 12250 W
(d) 12000 W
16. A block of mass m is pulled by a constant power P placed on a rough horizontal plane. The friction co-efficient between the block and surface is μ. Find the maximum velocity of the block.
(a) $\mu \mathrm{mgP}$
(b) $\frac{2 P}{\mu \mathrm{mg}}$
(c) $\frac{P}{2 \mu \mathrm{mg}}$
(d) $\frac{P}{\mu \mathrm{mg}}$

