V PLUS U

TIME:

DATE:

SUBJECT : PHYSICS

TOPIC: POWER

- 1. A force $f = (3\hat{\imath} + 4\hat{j})N$ acts on a 2 kg object that moves from an initial position $d_1 = (-3\hat{\imath} - 2\hat{j})m$ to final position $d_2 = (5\hat{\imath} + 4\hat{j})m$ in 6 s. What is the average power delivered by the force during the interval?
- 2. A particle moves with a velocity $v = (5\hat{i} 3\hat{j} + 6\hat{k})m/s$ under the influence of a constant force $F = (10\hat{i} + 10\hat{j} + 20\hat{k})N$. Find the instantaneous power delivered to the particle.
- A block of mass m is moving with a constant acceleration a on a rough horizontal plane. The coefficient of friction between the block and plane is μ. At time t from the beginning find the power delivered by
 - (a) gravity (b) normal force
 - (c) friction (d) the external agent
- 4. A block of mass 2.0 kg is pulled up on a smooth incline of angle 30° with the horizontal. If the block moves with an acceleration of 1.0 m/s², find the power delivered by the pulling force at a time 4.0 s after the motion starts.
- A stone is projected with velocity u at an angle θ with horizontal. Find out
 (a) average power of the gravity during time t.

(b) instantaneous power due to gravitational force at time t, where t is time of flight.

- 6. A water pump lifts water from a level 10 m below the ground. Water is pumped at a rate of 30 kg/min with negligible velocity. Calculate the minimum horsepower the engine should have to do this. (746 W = 1 HP)
- 7. Power applied to a particle varies with time as P = [3t² 2t + 1] W, where is time in seconds. What is the change in kinetic energy of particle between time t = 2 s to t = 4 s?

(c) the position is given as a function of time by $s = = \left(\frac{8P}{9m}\right)^{1/2} t^{-3/2}$

8. A vehicle of mass M is accelerated on a horizontal frictionless road under a force changing its velocity from u to v in distance s. If a constant power P is given by the engine of the vehicle, then v is

VP	LUS U	A Trusted Institute of JEE–Main Advance NEET	DPP-3	
SUBJECT : PHYSICS	TOPIC: POWER	TIME:	DATE:	

instantaneous power delivered by an external agent to pull m₁ with constant velocity v at any instant? (a) $(m_2 - m_1)gv$ (b) $(m_2 + m_1)gv$ (c) $2(m_2 - m_1)gv$ (d) $2(m_2 + m_1)gv$

- 15. A machine gun is firing 60 bullets per minute with a velocity of 700 m/s. If each bullet has a mass of 50 g, the power developed by the gun is (a) 20000 W (b) 10000 W (c) 12250 W (d) 12000 W
- A block of mass m is pulled by a constant power P placed on a rough 16. horizontal plane. The friction co-efficient between the block and surface is µ. Find the maximum velocity of the block.

(a) µmgP

(b) $\frac{2P}{\mu mg}$

(c) $\frac{P}{2\mu mg}$ (d) $\frac{P}{\mu mg}$