JEE MAIN 2020
 FULL TEST-2
 CHEMISTRY, PHYSICS, MATHEMATICS
 Max. Marks:- 300

Time : - 3 Hours
Date :

INSTRUCTIONS:

1. The test is of 3 hours duration.
2. The Test Booklet consists of 75 questions. The maximum marks are $\mathbf{3 0 0}$.
3. There are three parts in the question paper A, B, C consisting of Chemistry, Physics and Mathematics having 25 questions in each part of equal weightage. $\mathbf{2 0}$ questions will be MCQs and $\mathbf{5}$ questions will have answer to be filled as numerical value.
Marking Scheme for MCQs
Correct Answer Four mark (+4), Incorrect Answer Minus one mark (-1), Unanswered No mark (0)
Marking Scheme for questions for which answer is a Numerical value
Correct Answer Four mark (+4), Incorrect Answer No mark (0), Unanswered No mark (0)
4. There is only one correct response for each question. Filling up more than one response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly.

Always desire to learn something Useful.

Wake up every morning with the thought that something Wonderful is about to happen.

The difference between ordinary and eXtraordinary is that little extra.

```
Name:
```

\qquad

```
Address :
``` \(\qquad\)
```

Phone/Mobile No.

``` \(\qquad\)
```

Roll No.

``` \(\qquad\)

\section*{PART A - CHEMISTRY}

\section*{SECTION - 1 (Q.1-Q.20)}

Each question has FOUR options (1), (2), (3) and (4). ONLY ONE of these four options is correct.
Q. 1 For the reaction below, the product is Q .

(1)

(2)

(3)

(4)

Q. 2 Identify the correct statement(s):
(a) The oxidation number of Cr in \(\mathrm{CrO}_{5}\) is +6 .
(b) \(\Delta \mathrm{H}>\Delta \mathrm{U}\) for the reaction \(\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})\).
Provided both gases behave ideally.
(c) pH of \(0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}\) is less than that of 0.1 N HCl at \(25^{\circ} \mathrm{C}\).
(d) \(\left(\frac{\mathrm{RT}}{\mathrm{F}}\right)=0.0591\) volt at \(25^{\circ} \mathrm{C}\).
(1) a, b
(2) b, c
(3) a, c
(4) b, d
Q. 3 Give the IUPAC name for methyl salicylate.
(1) Methoxy benzoic acid
(2) 2-Hydroxy benzoic acid
(3) Methyl-2-hydroxy benzoate
(4) Methyl-3-hydroxy benzoate
Q. 4 The first electron affinity of \(\mathrm{C}, \mathrm{N}\) and O will be of the order
(1) C \(<\) N \(<\mathrm{O}\)
(2) \(\mathrm{N}<\) C \(<\) O
(3) \(\mathrm{C}<\mathrm{O}<\mathrm{N}\)
(4) \(\mathrm{O}<\) N \(<\) C
Q. 5 For any given series of spectral lines of atomic hydrogen, let \(\Delta \bar{v}=\bar{v}_{\text {max }}-\bar{v}_{\text {min }}\) be the difference in maximum andminimum frequencies in \(\mathrm{cm}^{-1}\). The ratio \(\Delta \bar{v}_{\text {Lyman }} / \Delta \bar{v}_{\text {Balmer }}\) is :
(1) \(27: 5\)
(2) \(4: 1\)
(3) \(5: 4\)
(4) \(9: 4\)
Q. 6 The major product of the following reaction is :

(1)

(2) \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{NH}_{2}\)
(3)

(4)

Q. 7 The correct statement is :
(1) zincite is a carbonate ore.
(2) aniline is a froth stabilizer.
(3) zone refining process is used for the refining of titanium.
(4) sodium cyanide cannot be used in the metallurgy of silver.
Q. 8 Consider the following table:
\begin{tabular}{|c|c|c|}
\hline Gas & \(\mathrm{a} /\left(\mathrm{k} \mathrm{Pa} \mathrm{dm}^{6} \mathrm{~mol}^{-1}\right)\) & \(\mathrm{b} /\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)\) \\
\hline A & 642.32 & 0.05196 \\
\hline B & 155.21 & 0.04136 \\
\hline C & 431.91 & 0.05196 \\
\hline D & 155.21 & 0.4382 \\
\hline
\end{tabular}
\(a\) and \(b\) are vander waals constant. The correct statement about the gases is :
(1) Gas \(C\) will occupy lesser volume than gas \(A\); gas B will be lesser compressible than gas D
(2) Gas C will occupy more volume than gas A ; gas B will be lesser compressible than gas D
(3) Gas C will occupy more volume than gas A; gas B will be more compressible than gas D
(4) Gas C will occupy lesser volume than gas A; gas B will be more compressible than gas D
Q. 9 Given: \(\mathrm{Co}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+} ; \mathrm{E}^{\mathrm{o}}=+1.81 \mathrm{~V}\)
\(\mathrm{Pb}^{4+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}^{2+} ; \mathrm{E}^{\mathrm{o}}=+1.67 \mathrm{~V}\)
\(\mathrm{Ce}^{4+}+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+} ; \mathrm{E}^{\mathrm{o}}=+1.61 \mathrm{~V}\)
\(\mathrm{Bi}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Bi} ; \mathrm{E}^{\mathrm{o}}=+0.20 \mathrm{~V}\)
Oxidizing power of the species will increase in the order :
(1) \(\mathrm{Ce}^{4+}<\mathrm{Pb}^{4+}<\mathrm{Bi}^{3+}<\mathrm{Co}^{3+}\)
(2) \(\mathrm{Co}^{3+}<\mathrm{Pb}^{4+}<\mathrm{Ce}^{4+}<\mathrm{Bi}^{3+}\)
(3) \(\mathrm{Co}^{3+}<\mathrm{Ce}^{4+}<\mathrm{Bi}^{3+}<\mathrm{Pb}^{4+}\)
(4) \(\mathrm{Bi}^{3+}<\mathrm{Ce}^{4+}<\mathrm{Pb}^{4+}<\mathrm{Co}^{3+}\)
Q. 10 The correct match between Item-I and Item-II is:

\section*{Item-I}
(a)High density

\section*{Item-II}
(I) Peroxide catalyst polythene
(b) Polyacrylonitrile
(II) Condensation at high temperature \& pressure
(c) Novolac
(d) Nylon 6
(III) Ziegler-Natta catalyst
(1) (a) - (III), (b) - (I), (c) - (II), (d) - (IV)
(2) (a) - (IV), (b) - (II), (c) - (I), (d) - (III)
(3) (a) - (II), (b) - (IV), (c) - (I), (d) - (III)
(4) (a) - (III), (b) - (I), (c) - (IV), (d) - (II)
Q. 11 In an acid-base titration, 0.1 M HCl solution was added to the NaOH solution of unknown strength. Which of the following correctly shows the change of pH of the titraction mixture in this experiment?

(1) a

(2) c
(3) d
(4) b
Q. 12 Complete removal of both the axial ligands (along the \(z\)-axis) from an octahedral complex leads to which of the following splitting patterns? (relative orbital energies not on scale).
(1)

(2) E

(3)

(4)

Q. 13 Liquids A and B form an ideal solution in the entire composition range. At 350 K , the vapour pressures of pure A and pure B are \(7 \times 10^{3} \mathrm{~Pa} \& 12 \times 10^{3} \mathrm{~Pa}\), respectively. The composition of the vapour in equilibrium with a solution containing 40 mole percent of \(A\) at this temperature is :
(1) \(\mathrm{x}_{\mathrm{A}}=0.37 ; \mathrm{x}_{\mathrm{B}}=0.63\)
(2) \(\mathrm{x}_{\mathrm{A}}=0.28 ; \mathrm{x}_{\mathrm{B}}=0.72\)
(3) \(\mathrm{x}_{\mathrm{A}}=0.76 ; \mathrm{x}_{\mathrm{B}}=0.24\)
(4) \(\mathrm{x}_{\mathrm{A}}=0.4 ; \mathrm{x}_{\mathrm{B}}=0.6\)
Q. 14 The major product of the following reaction is :

(1)

(2)

(3)

(4)

Q. 15 The element that does NOT show catenation is:
(1) Sn
(2) Ge
(3) Si
(4) Pb
Q. 16 The reaction \(2 \mathrm{X} \rightarrow \mathrm{B}\) is a zeroth order reaction. If the initial concentration of X is 0.2 M , the half-life is 6 h . When the initial concentration of X is 0.5 M , the time required to reach its final concentration of 0.2 M will be :
(1) 18.0 h
(2) 7.2 h
(3) 9.0 h
(4) 12.0 h
Q. 17 Consider the following reactions :

'A' is :
(1) \(\mathrm{CH} \equiv \mathrm{CH}\)
(2) \(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}\)
(3) \(\mathrm{CH}_{2}=\mathrm{CH}_{2}\)
(4) \(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\)
Q. 18 The principle of column chromatography is :
(1) Capillary action.
(2) Gravitational force.
(3) Differential adsorption of the substances on the solid phase.
(4) Differential absorption of the substances on the solid phase.
Q. 19 The major product of the following reaction is:

(1)

(2)

(3)

(4)

Q. 20 Match the following items in column I with the corresponding items in column II.

\section*{Column I}
(i) \(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\)

\section*{Column II}
(P) Portland cement ingredient
(ii) \(\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}\)
(iii) NaOH
(Q) Castner-Keller process
(iv) \(\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}\)
(R) Solvay process
(S) Temporary hardness
(1) (i)-(R); (ii)-(Q); (iii)-(S); (iv)-(P)
(2) (i)-(R); (ii)-(S); (iii)-(Q); (iv)-(P)
(3) (i)-(S); (ii)-(P); (iii)-(Q); (iv)-(R)
(4) (i)-(Q); (ii)-(R); (iii)-(P); (iv)-(S)

\section*{SECTION-2(0.21-Q.25)}

The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
Q. 21 Find the number of compounds where \(d_{x^{2}-y^{2}}\) orbitals will not take part in hybridisation.
(1) \(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right]\)
(2) \(\mathrm{SF}_{4}\)
(3) \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\)
(4) \(\left[\mathrm{XeO}_{3} \mathrm{~F}_{2}\right]\)
(5) \(\left[\mathrm{XeO}_{2} \mathrm{~F}_{2}\right]\)
(6) \(\left[\mathrm{Co}\left(\mathrm{en}_{3}\right)\right]^{3+}\)
(7) \(\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]\)
(8) \(\mathrm{POCl}_{3}\)
(9) \(\mathrm{XeF}_{4}\)
(10) \(\mathrm{XeO}_{6}{ }^{4-}\)
Q. 22 Consider a reaction :
\[
\begin{equation*}
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g}) \tag{1}
\end{equation*}
\]
\(\mathrm{A}(\mathrm{g}), \mathrm{B}(\mathrm{g})\) and \(\mathrm{C}(\mathrm{g})\) are taken in a container at 1 bar partial pressure each and adequate amount of liquid 'D' is added. From the data given below.
Calculate \(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}\)
Given: \(\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}} \mathrm{A}(\mathrm{g})=30 \mathrm{~kJ} / \mathrm{mole}\) \(\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}} \mathrm{B}(\mathrm{g})=20 \mathrm{~kJ} / \mathrm{mole}\) \(\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}} \mathrm{C}(\mathrm{g})=50 \mathrm{~kJ} / \mathrm{mole}\) \(\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}} \mathrm{D}(\mathrm{g})=100 \mathrm{~kJ} / \mathrm{mole}\).
Vapour pressure of \(\mathrm{D}(\ell)\) at \(300 \mathrm{~K}=(1 / 6)\) bar (All data at 300 K)
where, \(a=\) Equilibrium constant of reaction (\(\ell\))
\(\mathrm{b}=\) Twice the partial pressure of A at equilibrium
\(c=\) Twice the partial pressure of \(B\) at equilibrium
\(\mathrm{d}=\) Twice the partial pressure of C at equilibrium
Q. 23 32g of hydrated magnesium sulphate
\(\mathrm{MgSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\), when dissolved in 84 g of water, the solution freezes at \(-4.836^{\circ} \mathrm{C}\).
If \(\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\) and \(\mathrm{MgSO}_{4}\) is a strong electrolyte, what is the value of x .
Q. 24 How many of the following which can give Cannizaro reaction out of the following.

Q. 25 Give total number of reactions in which atleast 1 carbon oxidise during reaction.
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

\section*{PART B - PHYSICS}

SECTION - 1 (Q.26-Q.45)
Each question has FOUR options (1), (2), (3) and (4). ONLY ONE of these four options is correct.
Q. 26 Assume that the earth moves around the sun in a circular orbit of radius R and there exists a planet which also moves around the sun in circular orbit with an angular speed twice as large as that of the earth. The radius of the orbit of the planet is
(1) \(2^{-2 / 3} \mathrm{R}\)
(2) \(2^{2 / 3} R\)
(3) \(2^{-1 / 3} \mathrm{R}\)
(4) \(\mathrm{R} / \sqrt{2}\)
Q. 27 The reverse breakdown voltage of a Zener diode is 5.6 V in the given circuit. The current \(\mathrm{I}_{\mathrm{Z}}\) through the Zener is :

(1) 7 mA
(2) 17 mA
(3) 10 mA
(4) 15 mA
Q. 28 In the figure area of each plate is \(A\) and the distance between consecutive plates is as shown in the figure. What is the effective capacitance between points A \& B.

(1) \(\frac{\varepsilon_{0} A}{d}\)
(2) \(\frac{3 \varepsilon_{0} A}{d}\)
(3) \(\frac{2 \varepsilon_{0} A}{d}\)
(4) \(\frac{4 \varepsilon_{0} A}{d}\)
Q. 29 The wavelength of the first line of Lyman series is \(\lambda\). Wavelength of the first line in Paschen series is -
(1) \((108 / 7) \lambda\)
(2) \((27 / 5) \lambda\)
(3) \((7 / 108) \lambda\)
(4) \((5 / 27) \lambda\)
Q. 30 A convex lens of focal length 20 cm produces images of the same magnification 2 when an object is kept at two distances \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\left(\mathrm{x}_{1}>\mathrm{x}_{2}\right)\) from the lens. The ratio of \(x_{1}\) and \(x_{2}\) is :
(1) \(5: 3\)
(2) \(2: 1\)
(3) \(4: 3\)
(4) \(3: 1\)
Q. 31 A thin ring of 10 cm radius carries a uniformly distributed charge. The ring rotates at a constant angular speed of \(40 \pi \mathrm{rad} \mathrm{s}^{-1}\) about its axis, perpendicular to its plane. If the magnetic field at its centre is \(3.8 \times 10^{-9} \mathrm{~T}\), then the charge carried by the ring is close to (\(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\)) :
(1) \(2 \times 10^{-6} \mathrm{C}\)
(2) \(3 \times 10^{-5} \mathrm{C}\)
(3) \(4 \times 10^{-5} \mathrm{C}\)
(4) \(7 \times 10^{-6} \mathrm{C}\)
Q. 32 In Young's experiment for the interference of light, the separation between the silts is \(d\) and the distance of the screen from the slits is D. If \(D\) is increased by \(0.5 \%\) and \(d\) is decreased by \(0.3 \%\), then for the light of a given wavelength, which one of the following is true? "The fringe width........"
(1) increases by \(0.8 \%\)
(2) decreases by \(0.8 \%\)
(3) increases by \(0.2 \%\)
(4) decreases by \(0.2 \%\)
Q. 33 The physical sizes of the transmitter and receiver antenna in a communication system are :
(1) proportional to carrier frequency.
(2) inversely proportional to modulation frequency
(3) inversely proportional to carrier frequency.
(4) independent of both carrier and modulation frequency.
Q. 34 The elastic limit of brass is 379 MPa . What should be the minimum diameter of a brass rod if it is to support a 400 N load without exceeding its elastic limit?
(1) 1.16 mm
(2) 0.90 mm
(3) 1.36 mm
(4) 1.00 mm
Q. 35 A thin disc of mass \(M\) and radius \(R\) has mass per unit area \(\sigma(\mathrm{r})=\mathrm{kr}^{2}\) where r is the distance from its centre. Its moment of inertia about an axis going through its centre of mass and perpendicular to its plane is :
(1) \(\mathrm{MR}^{2} / 6\)
(2) \(\mathrm{MR}^{2} / 3\)
(3) \(2 M R^{2} / 3\)
(4) \(M R^{2} / 2\)
Q. 36 An insulating thin rod of length \(\ell\) has ax linear charge density \(\rho(x)=\rho_{0}(x / \ell)\) on it. The rod is rotated about an axis passing through the origin \((x=0)\) and perpendicular to the rod. If the rod makes \(n\) rotations per second, then the time averaged magnetic moment of the rod is :
(1) \((\pi / 4) n \rho_{0} \ell^{3}\)
(2) \(n \rho_{0} \ell^{3}\)
(3) \(\pi n \rho_{0} \ell^{3}\)
(4) \((\pi / 3) n \rho_{0} \ell^{3}\)
Q. 37 A particle is moving with constant speed \(\sqrt{2} \mathrm{~m} / \mathrm{s}\) on a circular path of radius 10 cm . Find the magnitude of average velocity when it has covered \((3 / 4)^{\text {th }}\) circular path.
(1) \((\pi / 3) \mathrm{m} / \mathrm{s}\)
(2) \((3 / 2 \pi) \mathrm{m} / \mathrm{s}\)
(3) \((3 / \pi) \mathrm{m} / \mathrm{s}\)
(4) \((4 / 3 \pi) \mathrm{m} / \mathrm{s}\)
Q. 38 Two sources of sound \(S_{1}\) and \(S_{2}\) produce sound waves of same frequency 660 Hz . A listener is moving from source \(S_{1}\) towards \(S_{2}\) with a constant speed \(u \mathrm{~m} / \mathrm{s}\) and he hears 10 beats/s. The velocity of sound is \(330 \mathrm{~m} / \mathrm{s}\). Then, \(u\) equals:
(1) \(2.5 \mathrm{~m} / \mathrm{s}\)
(2) \(15.0 \mathrm{~m} / \mathrm{s}\)
(3) \(5.5 \mathrm{~m} / \mathrm{s}\)
(4) \(10.0 \mathrm{~m} / \mathrm{s}\)
Q. 39 Two particles move at right angle to each other. Their de-Broglie wavelengths are \(\lambda_{1}\) and \(\lambda_{2}\) respectively. The particles suffer perfectly inelastic collision. The de-Broglie wavelength \(\lambda\), of the final particle, is given by :
(1) \(\lambda=\frac{\lambda_{1}+\lambda_{2}}{2}\)
(2) \(\frac{2}{\lambda}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\)
(3) \(\lambda=\sqrt{\lambda_{1} \lambda_{2}}\)
(4) \(\frac{1}{\lambda^{2}}=\frac{1}{\lambda_{1}^{2}}+\frac{1}{\lambda_{2}^{2}}\)
Q. 40 A block of mass 8 kg is at rest on a rough inclined plane as shown in the figure below. The magnitude of net force exerted by the surface on the block will be (\(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\))

(1) 40 N
(2) \(40 \sqrt{3} \mathrm{~N}\)
(3) 60 N
(4) 80 N
Q. 41 A sample of radioactive element has a mass of 10 g at an instant \(t=0\). The approximate mass of this element in the sample after two mean lives is :
(1) 2.50 g
(2) 3.70 g
(3) 6.30 g
(4) 1.35 g
Q. 42 For one complete cycle of a thermodynamic processes on a gas as shown in P-V diagram. Which is true :

(1) \(\Delta \mathrm{U}=0 ; \mathrm{Q}<0\)
(2) \(\Delta \mathrm{U}>0 ; \mathrm{Q}<0\)
(3) \(\Delta U=0 ; Q>0\)
(4) \(\Delta U<0 ;\) Q \(>0\)
Q. 43 A man of mass \(M\) stands at one end of a plank of length \(\ell\), which lies at rest on a frictionless surface. The man walks to the other end of plank, if mass of plank is 3 M , the distance moved by the man relative to the ground is-
(1) \(\ell / 4\)
(2) \(3 \ell / 4\)
(3) \(2 \ell / 3\)
(4) \(\ell / 3\)
Q. 44 In a vernier callipers, 10 divisions of vernier scale coincides with 9 divisions of main scale, the least count of which is 0.1 cm . If in the measurement of inner diameter of cylinder zero of vernier scale lies between 1.3 cm and 1.4 cm of main scale and 2 nd division of vernier scale coincides with main scale division then diameter will be :
(1) 1.30 cm
(2) 1.34 cm
(3) 1.32 cm
(4) 1.36 cm
Q. 45 A wire is stretched between two rigid supports vibrates in its fundamental mode with a frequency of 50 Hz . The mass of the wire is 30 g and its linear density is \(4 \times 10^{-2} \mathrm{~kg} / \mathrm{m}\). The speed of the transverse wave at the string is :
(1) \(25 \mathrm{~m} \mathrm{~s}^{-1}\)
(2) \(50 \mathrm{~m} \mathrm{~s}^{-1}\)
(3) \(75 \mathrm{~m} \mathrm{~s}^{-1}\)
(4) \(100 \mathrm{~m} \mathrm{~s}^{-1}\)

\section*{SECTION - 2 (Q.46-Q.50)}

The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
Q. 46 The work of 147 kilojoule is performed in order to compress one kilomole of a gas adiabatically and in this process the temperature of the gas increases by \(7^{\circ} \mathrm{C}\). If \(\mathrm{R}=8.4 \mathrm{~J} / \mathrm{mole}-\mathrm{k}\). Then find the degree of freedom of gas.
Q. 47 A man of mass \(m\) starts moving w.r.t. a platform of mass 2 m with a velocity \(u=9 / 13 \mathrm{~m} / \mathrm{s}\) as shown in the figure. The platform is fitted with a concave mirror of focal length \(f\). The velocity of image (in \(\mathrm{m} / \mathrm{s}\)) at the initial moment is :

Q. 48 Consider a huge charge reservoir at potential
\(\mathrm{V}=200\) volts. A spherical capacitor \(\mathrm{C}_{1}=40 \mathrm{nF}\) is brought in contact with the charge reservoir and then removed. Next another spherical capacitor \(\mathrm{C}_{2}=30 \mathrm{nF}\) is brought in contact with \(\mathrm{C}_{1}\) and removed. We repeat this process a large number of times. Assume that potential of reservoir does not change during this exercise. Then the charge (in \(\mu \mathrm{C}\)) on \(\mathrm{C}_{2}\) after a very long time is?
Q. 49 A man throws a packet from a tower directly aiming at his friend who is standing at a certain distance from the base which is same as a height of the tower. If packet is thrown with a speed of \(4 \mathrm{~m} / \mathrm{s}\) and it hits the ground midway between the tower base \& his friend. If height of the tower is
\((4 x / 5) \mathrm{m}\) then x is \(\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)
Q. 50 Equal volumes of two immiscible liquids of densities \(\rho\) and \(3 \rho\) are filled in a vessel. Two small holes are made at depth \(h / 3\) and \(4 h / 3\) from upper surface of lighter liquid. If \(v_{1}\) and \(v_{2}\) are velocities of efflux at these two holes respectively at given time, then
\(v_{1} / v_{2}\) is \(\frac{X}{4 \sqrt{2}}\) then \(X\) is : (Assume area of hole is negligible as compare area of container)

\section*{PART C - MATHEMATICS}

\section*{SECTION - 1 (Q.51-Q.70)}

Each question has FOUR options (1), (2), (3) and (4). ONLY ONE of these four options is correct.
Q. 51 The equation of the plane, which bisects the line joining the points \((1,2,3)\) and \((3,4,5)\) at right angles is-
(1) \(x+y+z=0\)
(2) \(x+y-z=9\)
(3) \(x+y+z=9\)
(4) \(x+y-z+9=0\)
Q. 52 If \(A=\left(\begin{array}{ccc}5 & 5 x & x \\ 0 & x & 5 x \\ 0 & 0 & 5\end{array}\right)\) and \(\left|A^{2}\right|=25\), then \(|x|\) is equal to-
(1) \(1 / 5\)
(2) 5
(3) \(5^{2}\)
(4) 1
Q. 53 A value of \(\alpha\) such that \(\int_{\alpha}^{\alpha+1} \frac{d x}{(x+\alpha)(x+\alpha+1)}=\log _{e}\left(\frac{9}{8}\right)\) is
(1) \(1 / 2\)
(2) 2
(3) \(-1 / 2\)
(4) -2
Q. 54 Let \(f(x)=15-|x-10| ; x \in R\). Then the set of all values of x , at which the function, \(\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))\) is not differentiable, is :
(1) \(\{5,10,15,20\}\)
(2) \(\{10,15\}\)
(3) \(\{5,10,15\}\)
(4) \(\{10\}\)
Q. 55 Straight lines \(x-y=7\) and \(x+4 y=2\) intersect at B. Points \(A\) and \(C\) are so chosen on these two lines such that \(\mathrm{AB}=\mathrm{AC}\). The equation of line AC passing through \((2,-7)\) is
(1) \(x-y-9=0\)
(2) \(23 x+7 y+3=0\)
(3) \(2 x-y-11=0\)
(4) \(7 x-6 y-56=0\)
Q. \(56 \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}\) equals :
(1) \(2 \sqrt{2}\)
(2) \(4 \sqrt{2}\)
(3) \(\sqrt{2}\)
(4) 4
Q. 57 Which one of the following Boolean expressions is a tautology?
(1) \((p \vee q) \wedge(\sim p \vee \sim q)\)
(2) \((p \wedge q) \vee(p \wedge \sim q)\)
(3) \((p \vee q) \wedge(p \vee \sim q)\)
(4) \((p \vee q) \vee(p \vee \sim q)\)
Q. 58 The mean and the median of the following ten numbers in increasing order \(10,22,26,29,34\), x \(42,67,70, \mathrm{y}\) are 42 and 35 respectively, then \(\mathrm{y} / \mathrm{x}\) is equal to :
(1) \(7 / 3\)
(2) \(9 / 4\)
(3) \(7 / 2\)
(4) \(8 / 3\)
Q. 59 A value of \(\theta \in(0, \pi / 3)\), for which
\(\left|\begin{array}{ccc}1+\cos ^{2} \theta & \sin ^{2} \theta & 4 \cos 6 \theta \\ \cos ^{2} \theta & 1+\sin ^{2} \theta & 4 \cos 6 \theta \\ \cos ^{2} \theta & \sin ^{2} \theta & 1+4 \cos 6 \theta\end{array}\right|=0\), is
(1) \(7 \pi / 24\)
(2) \(\pi / 18\)
(3) \(\pi / 9\)
(4) \(7 \pi / 36\)
Q. 60 Let \(P(4,3)\) be a point on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\). If the normal at \(P\) intersects the \(X-\) axis at \((16,0)\), then the eccentricity of the hyperbola is
(1) \(\sqrt{5} / 2\)
(2) 2
(3) \(\sqrt{2}\)
(4) \(\sqrt{3}\)
Q. 61 The tangent to the parabola \(y^{2}=4 x\) at the point where it intersects the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=5\) in the first quadrant, passes through the point :
(1) \((-1 / 3,4 / 3)\)
(2) \((-1 / 4,1 / 2)\)
(3) \((3 / 4,7 / 4)\)
(4) \((1 / 4,3 / 4)\)
Q. 62 If the fourth term in the binomial expansion of \(\left(\frac{2}{x}+x^{\log _{8} x}\right)^{6}(x>0)\) is \(20 \times 8^{7}\), then value of \(x\) is:
(1) 8
(2) \(8^{2}\)
(3) \(8^{-2}\)
(4) \(8^{3}\)
Q. 63 A problem in mathematics is given to 4 students whose chances of solving individually are \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\) and \(\frac{1}{5}\). Then probability that the problem will be solved at least by one student is
(1) \(2 / 3\)
(2) \(3 / 5\)
(3) \(4 / 5\)
(4) \(3 / 4\)
Q. 64 A candidate is required to answer 6 out of 12 questions which are divided into two parts \(A\) and \(B\) each containing 6 questions and he/she is not permitted to attempt more than 4 questions from any part. In how many different ways can he/she make up his/her choice of 6 questions?
(1) 850
(2) 800
(3) 750
(4) 700
Q. 65 The sum of all natural numbers ' n ' such that \(100<\mathrm{n}<200\) and H.C.F. \((91, \mathrm{n})>1\) is :
(1) 3221
(2) 3121
(3) 3203
(4) 3303
Q. \(66 y=\int \cos \left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\} d x\) is an equation of a family of
(1) straight lines
(2) circles
(3) ellipses
(4) parabolas
Q. 67 If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is :
(1) \(5: 9: 13\)
(2) \(5: 6: 7\)
(3) \(4: 5: 6\)
(4) \(3: 4: 5\)
Q. 68 If \(S_{1}\) and \(S_{2}\) are respectively the sets of local minimum and local maximum points of the function, \(f(x)=9 x^{4}+12 x^{3}-36 x^{2}+25, x \in R\), then :
(1) \(S_{1}=\{-2,1\} ; S_{2}=\{0\}\)
(2) \(\mathrm{S}_{1}=\{-2,0\} ; \mathrm{S}_{2}=\{1\}\)
(3) \(\mathrm{S}_{1}=\{-2\} ; \mathrm{S}_{2}=\{0,1\}\)
(4) \(S_{1}=\{-1\} ; S_{2}=\{0,2\}\)
Q. 69 If \(\vec{x}\) is a vector in the direction of \((2,-2,1)\) of magnitude 6 and \(\vec{y}\) is a vector in the direction of \((1,1,-1)\) of magnitude \(\sqrt{3}\), then \(|\vec{x}+2 \vec{y}|=\)
(1) 40
(2) \(\sqrt{35}\)
(3) \(\sqrt{17}\)
(4) \(2 \sqrt{10}\)
Q. 70 Given the relation \(\mathrm{R}=\{(1,2),(2,3)\}\) on the set \(A=\{1,2,3\}\), the minimum number of ordered pairs which when added to R make it an equivalence relation is-
(1) 5
(2) 6
(3) 7
(4) 8

\section*{SECTION - 2 (Q.71-Q.75)}

The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
Q. 71 Pair of tangents are drawn from every point on the line \(3 x+4 y=12\) on the circle \(x^{2}+y^{2}=4\). Their variable chord of contact always passes through a fixed point whose co-ordinates are (1, A/3). Find the value of A.
Q. 72 In a class of 140 students numbered 1 to 140 , all even numbered students opted mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is \((30+X)\). Find the value of \(X\).
Q. 73 Consider the quadratic equation
\((c-5) x^{2}-2 c x+(c-4)=0, c \neq 5\).
Let \(S\) be the set of all integral values of \(c\) for which one root of the equation lies in the interval \((0,2)\) and its other root lies in the interval \((2,3)\). Then the number of elements in \(S\) is \((12-A)\). Find the value of A.
Q. 74 The value of \(\cot \left(\sum_{n=1}^{19} \cot ^{-1}\left(1+\sum_{p=1}^{n} 2 p\right)\right)=\frac{7 \times X}{19}\). Find the value of X .
Q. 75 If \(y(x)\) is the solution of the differential equation
\[
\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0,
\]
where \(\mathrm{y}(1)=\frac{1}{2} \mathrm{e}^{-2}\), then \(\mathrm{y}(\mathrm{x})\) is decreasing in \((1 / \mathrm{A}, 1)\). Find the value of A.```

