JEE MAIN 2020

FULL TEST-5 SOLUTIONS

STANDARD ANSW ER KEY											
Q	1	2	3	4	5	6	7	8	9	10	11
A	1	2	3	1	3	3	1	3	3	2	1
Q	12	13	14	15	16	17	18	19	20	21	22
A	2	4	2	3	2	2	4	1	2	4	3
Q	23	24	25	26	27	28	29	30	31	32	33
A	4	6	0	2	2	2	4	4	1	2	4
Q	34	35	36	37	38	39	40	41	42	43	44
A	1	3	3	2	4	2	4	2	3	1	2
Q	45	46	47	48	49	50	51	52	53	54	55
A	4	4	2	7	4	7	3	3	3	4	1
Q	56	57	58	59	60	61	62	63	64	65	66
A	3	2	3	3	3	2	1	4	1	2	2
Q	67	68	69	70	71	72	73	74	75		
A	1	1	1	3	2	1	2	3	1		

(1) (1). $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ On addition of NaOH to $\mathrm{CH}_{3} \mathrm{COOH}$ solution, 60% of the acid is neutralised i.e. after reaction 40% of acid \& 60% of salt are present which is an acidic buffer solution.
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}=4.7+\log \frac{60}{40}$

$$
=4.88
$$

(2) (2). $\mathrm{A}=56, \mathrm{D}=58$
(3) (3). $\mathrm{NO}_{2}^{+}: \mathrm{O}=\mathrm{N}^{+}=\mathrm{O}$ (sp, linear)
$\mathrm{CO}_{2}: \mathrm{O}=\mathrm{C}=\mathrm{O} \quad$ (linear)

(4) (1). $(\sigma 1 \mathrm{~s})^{2}<\left(\sigma 1 \mathrm{~s}^{*}\right)^{2}<\left(\sigma 2 \mathrm{~s}^{*}\right)^{2}<\left(\sigma 2 \mathrm{~s}^{*}\right)^{2}$

$$
<\left(\pi 1 p_{\mathrm{x}}\right)^{2}=\left(\pi 2 \mathrm{p}_{\mathrm{y}}^{*}\right)^{2}
$$

All electrons are paired in C_{2} molecules hence C_{2} will be diamagnetic.
(5) (3). Option three have -OH group gauche (stabilised by H -bonding) and $-\mathrm{CH}_{3}$ group anti (minimum repulsion). So, it is most stable.
(6) (3).

(7)
(1). $\mathrm{Me}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{NH}_{3} / \mathrm{NaNH}_{2}}$

(a)
$\mathrm{Me}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Et}$
(b)
(8) (3). Flask I :

1 Lit of 1 M solution of A

$\therefore \quad 2 \mathrm{t}_{1 / 2}=8 ; \mathrm{t}_{1 / 2}=4$

Flask II :
100 ml of 0.6 M solution of A

$$
\stackrel{\downarrow}{0.3 \mathrm{M}} \quad \mathrm{t}_{1 / 2}=?
$$

$\mathrm{t}_{1 / 2}=4 \mathrm{hrs}$.
[For $1^{\text {st }}$ order reaction $t_{1 / 2}$ does not depends on concentration]
(9) (3). Given:
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} ; \mathrm{E}_{1}{ }^{\circ}=0.337 \mathrm{~V}$

$$
; \Delta \mathrm{G}_{1}^{\circ}=-2 \mathrm{FE}_{1}^{\circ}
$$

(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+} ; \mathrm{E}_{2}^{\circ}=0.153 \mathrm{~V}$

$$
; \Delta \mathrm{G}_{2}^{\circ}=-1 \mathrm{FE}_{2}^{\circ}
$$

(iii) $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu} ; \mathrm{E}_{3}{ }^{\circ}=$?; $\Delta \mathrm{G}_{3}{ }^{\circ}=-1 \mathrm{FE}_{3}{ }^{\circ}$

Equation (i) - equation (ii) will gives equation (iii)

$$
\begin{aligned}
& \Delta \mathrm{G}_{1}^{\circ}-\Delta \mathrm{G}_{2}^{\circ}=\Delta \mathrm{G}_{3}^{\circ} \\
& -2 \mathrm{FE}_{1}^{\circ}+\mathrm{FE}_{2}^{\circ}=-\mathrm{FE}_{3}^{\circ} \\
& -\mathrm{F}\left(2 \mathrm{E}_{1}^{\circ}-\mathrm{E}_{2}^{\circ}\right)=-\mathrm{FE}_{3}^{\circ}
\end{aligned}
$$

$\therefore \quad \mathrm{E}_{3}{ }^{\circ}=2 \mathrm{E}_{1}{ }^{\circ}-\mathrm{E}_{2}{ }^{\circ}$
(10) (2). $\mathrm{B}_{2} \mathrm{H}_{6}$ (diborane)

$(3 \mathrm{C}-2 \mathrm{e}-) \rightarrow 2$

All the hydrogen atoms are not in the same plane.
(11)
(1). At. no. $\underset{\text { (III-B) }}{58} \xrightarrow{{ }_{2}^{4} \mathrm{He}(\alpha)} \underset{\text { (II-A) }}{56}$

At. no. $\underset{\text { (III-B) }}{90} \xrightarrow{{ }_{2}^{4} \mathrm{He}(\alpha)} \underset{\text { (II-A) }}{88}$
(12) (2). $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \Rightarrow \mathrm{Cu}^{+2}$

$\mathrm{NH}_{3}=$ SFL so pairing possible.
(13) (4). $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}+\mathrm{CH}_{3}-\mathrm{Mg}-\mathrm{I}$

(14)
(2).
(a)

(b)
(c)
(15) (3).

(16)
(2). $\mathrm{R}-\mathrm{C} \equiv \mathrm{N} \xrightarrow{\text { Reduction }} \mathrm{R}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(a)

(b)
$\mathrm{RNC} \xrightarrow{\text { Hydrolysis }} \mathrm{R}-\mathrm{NH}_{2}+\mathrm{HCOOH}$
(c)
$\mathrm{R}-\mathrm{NH}_{2} \xrightarrow{\mathrm{HNO}_{2}} \mathrm{R}-\mathrm{OH}+\mathrm{N}_{2}$
(d)
(17) (2). Sucrose is a disaccharide of α-D-Glucopyranose and β-D-fructofuranose.
(18) (4).

(19)

$$
\begin{aligned}
& \text { (1). } \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \\
& 10 \mathrm{~mL} \text { of } 1 \mathrm{MH}_{2} \mathrm{SO}_{4}=10 \mathrm{~m} \mathrm{~mol} \\
& {\left[\because \mathrm{M} \times \mathrm{V}_{(\mathrm{mL})}=\mathrm{m} \mathrm{~mol}\right]}
\end{aligned}
$$

NH_{3} consumed $=20 \mathrm{~m} \mathrm{~mol}$
Acid used for the absorption of ammonia
$=20-10 \mathrm{~m} \mathrm{~mol}$
$=10 \mathrm{~mL}$ of $2 \mathrm{~N}($ or 1 M$) \mathrm{H}_{2} \mathrm{SO}_{4}$
$\% \mathrm{~N}=\frac{1.4 \times \mathrm{N} \times \mathrm{V}}{\mathrm{w}}=\frac{1.4 \times 10 \times 2}{0.75}=37.33 \%$
(20) (2). Acidic strength of hydrides increase with increase in molecular mass.
Thus order of acidic strength :
$\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
$\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
$\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
Acidic strength increases, pK_{a} decreases.
Order of $\mathrm{pK}_{\mathrm{a}}: \mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(21) 4.
$\begin{array}{cccc}\mathrm{CH}_{3} \mathrm{COOH} & +\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} & \rightleftharpoons & \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\end{array}+\mathrm{H}_{2} \mathrm{O}$

$$
K_{c}=\frac{x \times x}{(4-x) \times(4-x)} \Rightarrow 4=\frac{x^{2}}{(4-x)^{2}}
$$

Taking root

$$
2=\frac{x}{4-x} \Rightarrow x=\frac{8}{3} \Rightarrow \mathrm{CH}_{3} \mathrm{COOH}=4-\frac{8}{3}=\frac{4}{3}
$$

(22)

$\mathrm{n}_{1} \mathrm{vf}_{1}=\mathrm{n}_{2} \mathrm{vf}_{2} ; \mathrm{n} \times 5=1 \times 3 ; \mathrm{n}_{1}=3 / 5$
(23)
4. $\frac{\mathrm{r}_{\mathrm{H}_{2}}}{\mathrm{r}_{\mathrm{O}_{2}}}=\frac{\mathrm{n}_{\mathrm{H}_{2}} / \mathrm{t}}{\mathrm{n}_{\mathrm{O}_{2}} / \mathrm{t}}=\sqrt{\frac{\mathrm{Mw}_{\mathrm{O}_{2}}}{\mathrm{Mw}_{\mathrm{H}_{2}}}}$
$\frac{\mathrm{w}_{\mathrm{H}_{2}} / 2}{\mathrm{w}_{\mathrm{O}_{2}} / 32}=\sqrt{\frac{32}{2}}=4$
(24)
6. $\mathrm{d}=6.8 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mathrm{a}=290 \mathrm{pm}=2.9 \times 10^{-8} \mathrm{~cm}$
$\mathrm{d}=\frac{\mathrm{Z} \times \mathrm{m}}{\mathrm{N} \times \mathrm{a}^{3}}$
$\mathrm{N}=\frac{\mathrm{Z} \times \mathrm{m}}{\mathrm{d} \times \mathrm{a}^{3}}=\frac{2 \times 200}{6.8 \times\left(2.9 \times 10^{-8}\right)^{3}}$

$$
=2.4 \times 10^{24}
$$

(25)
0. $\mathrm{SO}_{3} \rightarrow \mathrm{~S}_{3} \mathrm{O}_{9}$
$6(\mathrm{~S}=\mathrm{O})$ bonds
three (S-O-S) bonds

(26)

$$
\text { (2). } \begin{aligned}
{[\mathrm{a}] } & =\mathrm{T}^{2} ;[\mathrm{x}]=\mathrm{L} \\
{[\mathrm{P}] } & =\mathrm{ML}^{-1} \mathrm{~T}^{-2}=\frac{\mathrm{T}^{2}}{[\mathrm{~b}] \mathrm{L}} \\
{[\mathrm{~b}] } & =\frac{\mathrm{T}^{2}}{\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~L}}=\mathrm{M}^{-1} \mathrm{~T}^{4}
\end{aligned}
$$

$\therefore \quad \frac{[\mathrm{a}]}{[\mathrm{b}]}=\frac{\mathrm{T}^{2}}{\mathrm{M}^{-1} \mathrm{~T}^{4}}=\mathrm{MT}^{-2}$
(2). $\frac{\mathrm{x}}{16}=\frac{36}{64} ; \mathrm{x}=9 \Omega$

$$
\begin{gather*}
\frac{\mathrm{dx}}{\mathrm{x}}=\frac{\mathrm{d} \ell}{\ell(1-\ell)}=\frac{0.5 \times 10^{-1}}{36 \times 64} \tag{27}\\
\mathrm{dx}=\frac{0.05 \times 9}{36 \times 64}=\frac{1}{5120} \Omega \\
\mathrm{x}=9 \pm \frac{1}{5120} \Omega
\end{gather*}
$$

(2). $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}=\frac{100^{2} \times 1}{10}=1000 \mathrm{~m}$

$$
\begin{equation*}
\frac{\Delta \mathrm{R}}{\mathrm{R}}=\frac{2 \Delta \mathrm{u}}{\mathrm{u}}+\frac{\cos 2 \theta}{\sin 2 \theta} \times \Delta \theta \tag{28}
\end{equation*}
$$

$$
\Rightarrow \frac{\Delta \mathrm{R}}{1000}=\frac{2 \times 1}{100} \Rightarrow \Delta \mathrm{R}=20 \mathrm{~m}
$$

$$
980 \mathrm{~m}<\mathrm{R}<1020 \mathrm{~m}
$$

(29) (4).

$$
\mathrm{X}_{\mathrm{Cr}}=\frac{\left(\frac{\pi \mathrm{m}}{16}\right) \frac{\mathrm{L}}{\sqrt{2}}-\frac{\pi \mathrm{m}}{16}\left(-\frac{\mathrm{L}}{\sqrt{2}}\right)}{\mathrm{m}} \Rightarrow \frac{\pi}{8}\left(\frac{\mathrm{~L}}{\sqrt{2}}\right)
$$

from origin

$\overrightarrow{\mathrm{r}}=\frac{\pi}{8}\left(\frac{\mathrm{~L}}{\sqrt{2}}\right)(\cos 45 \hat{\mathrm{i}}+\sin 45 \hat{\mathrm{j}})=\frac{\pi \mathrm{L}}{16}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
(30) (4). In this case, friction would oppose the motion of lowest point (point of contact)

(31) (1). $\mathrm{dF}=2 \mathrm{~T} \sin \left(\frac{\mathrm{~d} \theta}{2}\right)$

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{dF}}{\mathrm{dm}}=\frac{2\left(\frac{\mathrm{AY}}{\ell} \Delta \ell\right)\left(\frac{\mathrm{d} \theta}{2}\right)}{\left(\frac{\mathrm{m}}{2 \pi} \cdot \mathrm{~d} \theta\right)} \\
& =\frac{2 \pi \mathrm{AY} \Delta \ell}{\mathrm{~m} \ell}=\frac{2 \pi \mathrm{AY}(\Delta \mathrm{R})}{\mathrm{m} \cdot \mathrm{R}}=\left(\frac{\mathrm{AY} 2 \pi}{\mathrm{mR}}\right) \Delta \mathrm{R} \\
& =\left(\omega^{2}\right) \Delta \mathrm{R}
\end{aligned}
$$

$$
\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{mR}}{\operatorname{AY}(2 \pi)}}
$$

$$
\mathrm{t}=\frac{\mathrm{T}}{4}=\frac{\pi}{2} \sqrt{\frac{\mathrm{mR}}{\mathrm{AY}(2 \pi)}} ; \sqrt{\frac{\pi \mathrm{mR}}{8 \mathrm{YA}}}
$$

(32)
(2).

$\omega_{1}=\frac{2 \pi}{1} \mathrm{rad} / \mathrm{hr} ; \omega_{2}=\frac{2 \pi}{8} \mathrm{rad} / \mathrm{hr}$

$$
\begin{aligned}
& \left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{2}=\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}\right)^{3} \Rightarrow \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=4 \\
\Rightarrow & \mathrm{R}_{2}=4 \times 10^{4} \mathrm{~km} \\
& \mathrm{~V}_{1}=\frac{2 \pi \mathrm{R}_{1}}{1 \mathrm{~h}}=2 \pi \times 10^{4} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

$\mathrm{V}_{2}=\frac{2 \pi \mathrm{R}_{2}}{8 \mathrm{~h}}=\pi \times 10^{4} \mathrm{~km} / \mathrm{hr}$
At closest separation
$\omega=\frac{\mathrm{V}_{\text {rel }} \perp \text { to line joining }}{\text { length of line journing }}$
$=\frac{\pi \times 10^{4} \mathrm{~km} / \mathrm{hr}}{3 \times 10^{4} \mathrm{~km}}=\frac{\pi}{3} \mathrm{rad} / \mathrm{hr}$.
(33) (4). When source is at origin, the observer receives the sound emitted by the source, when it was at P.

Such that $\cos \theta=\frac{50 \mathrm{t}}{200 \mathrm{t}}=\frac{1}{4}$

$v=\frac{v_{0}(v)}{v-v_{s} \cos \theta}=\frac{90 \times 200}{200-\frac{50}{4}}=96 \mathrm{~Hz}$
(1). For chamber : $\frac{d Q}{d t}=k\left(\theta_{1}-\theta_{0}\right)=k\left(\theta_{2}-\theta_{0}\right)$
$\Rightarrow \quad \theta_{1}=\theta_{2}$
For heater
$\frac{d Q}{d t}=e_{1} \operatorname{A\sigma }\left(T_{1}^{4}-\theta_{1}^{4}\right)=e_{2} \operatorname{A\sigma }\left(T_{2}^{4}-\theta_{2}^{4}\right)$
$e_{1}>e_{2} \Rightarrow T_{1}<T_{2}$
(35) (3). For isothermal process $\mathrm{V}_{\mathrm{f}}=2 \mathrm{~V}_{0}$
$\therefore \quad \mathrm{P}_{\mathrm{f}}=\mathrm{P}_{0} / 2$
For isobaric process
$\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{0} / 2 ; \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{V}_{0}}{2 \times 2 \mathrm{~V}_{0}} \cdot \mathrm{~T}_{0}=\frac{\mathrm{T}_{0}}{4}$
For $\mathrm{P} \propto \mathrm{V}$ process
$\mathrm{P}-\mathrm{V}$ must be straight line
$\mathrm{T} \propto \mathrm{V}^{2} \quad \Rightarrow \quad \mathrm{~V}-\mathrm{T}$ must be parabolic
$\mathrm{P}^{2} \propto \mathrm{~T} \quad \Rightarrow \quad \mathrm{P}-\mathrm{T}$ must be parabolic
(3). In the first diagram where A \& B are there B is short circuit only A in the circuit.

(37)

$\Rightarrow \mathrm{R}_{1}=\mathrm{R}_{2}$
But $\mathrm{m}_{1} \neq \mathrm{m}_{2} \Rightarrow \omega_{1}=\frac{\mathrm{qB}}{\mathrm{m}_{1}} \neq \frac{\mathrm{qB}}{\mathrm{m}_{2}}$
$\Rightarrow \omega$ is not equal. So collision does not occur at diametrically opposite point.
(38) (4). Consider the expression for the current rising exponentially in the LR circuit. The time constant is (L/R). In this case the curve (1) is rising faster than curve (2) indicating that $\left(L_{1} / R_{1}\right)<\left(L_{2} / R_{2}\right)$. However, in both the cases the maximum current is the same and equal to $\left(\mathrm{V} / \mathrm{R}_{1}\right)$ or $\left(\mathrm{V} / \mathrm{R}_{2}\right)$, which means $\mathrm{R}_{1}=\mathrm{R}_{2}$
(39)

$\rho=\mathrm{A}(\mathrm{H}-1)=4 \times \frac{1}{2}=2^{\circ}$
\therefore Total deviation $=90^{\circ}$ (due to reflection)

$$
+2^{\circ}(\text { due to prism })=92^{\circ}
$$

but net deviation should be 90°
\therefore Due to reflection $=88^{\circ}=\pi-2 \mathrm{i} \Rightarrow \mathrm{i}=46^{\circ}$
i.e. Mirror must rotated by 1° anticlockwise.
(40)
(4). Position of $10^{\text {th }}$ maxima $=\frac{10 \lambda \mathrm{D}}{\mathrm{d}}=3 \mathrm{~cm}$ (w.r. to central maxima)
$\frac{\lambda \mathrm{D}}{\mathrm{d}}=\frac{3}{10} \mathrm{~cm}$
New fringe width $=\frac{3}{10 \times \mu}$
New position of $10^{\text {th }}$ maxima

$$
=\frac{3}{10 \times 1.5} \times 10=2 \mathrm{~cm}
$$

$\therefore \quad$ Position of central maxima $=2 \mathrm{~cm}$
$\therefore \quad 10^{\text {th }}$ maxima $=4 \mathrm{~cm}$
(41) (2). For reverse bias : N end of PN junction should be connected to high potential wrt P end.
(42) (3). Modulation factor determines both the strength and quality of the signal.
(2). $\mathrm{N}_{1}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}} ; \mathrm{N}_{1}=\frac{1}{3} \mathrm{~N}_{0}$
$\frac{\mathrm{N}_{0}}{3}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{2}}$
$\mathrm{N}_{2}=\frac{2}{3} \mathrm{~N}_{0} ; \frac{2}{3} \mathrm{~N}_{0}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{1}}$
From eq. (1) and (2)
$\frac{1}{2}=\mathrm{e}^{-\lambda\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} ; \lambda\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\ln 2$
$\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{\ln 2}{\lambda}=\mathrm{T}_{1 / 2}=50$ days
4. $\mathrm{fs}_{\max }=\mu \mathrm{mg}=0.15 \times 20 \times 10=30 \mathrm{~N}$

$\mathrm{a}_{\text {block }}=\frac{30}{20}=\frac{3}{2} \mathrm{~m} / \mathrm{s}^{2}$

$\mathrm{a}_{\text {truck }}=2 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{a}_{\mathrm{rel}}=\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{d}=\frac{1}{2} \mathrm{a}_{\text {rel }} \mathrm{t}^{2} ; 4=\frac{1}{2} \times \frac{1}{2} \times \mathrm{t}^{2} ; \mathrm{t}=4 \mathrm{sec}$.
Distance travelled by truck

$$
=\frac{1}{2} \times 2(4)^{2}=16 \mathrm{~m}
$$

(47)
2.

It is clear from the figure that $\mathrm{L} / 3$ path difference represent $\pi / 2$ phase difference.
$\therefore \quad 7 \mathrm{~L} / 9$ path difference represents $7 \pi / 6$ phase difference.

Lets say amplitude of pressure variation be A then amplitude at $\frac{7 \mathrm{~L}}{9}$ will be \mid A $\left.\sin \frac{7 \pi}{6} \right\rvert\,$
The ratio of pressure amplitude at Q to the maximum pressure amplitude is $1: 2$.
(48)
7. $(x+13) \times 3=(27-x) \times 1$

$3 \mathrm{x}+39=-\mathrm{x}+27 ; \mathrm{x}=-3$
So $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=27-(\mathrm{x}+13)=17$
(49)
4. $\phi=2 \mathrm{eV} ; \frac{\mathrm{hc}}{\lambda_{1}}=8 \mathrm{eV} ; \mathrm{T}_{2}=2 \mathrm{~T}_{1}$

If λ_{11} is the wavelength corresponding to maximum intensity at $\mathrm{T}_{1} \& \mathrm{~T}_{2}$ at T_{2};
Then $\lambda_{2}=\lambda_{1} / 2$ (by wein's displacement Law)
$\frac{\mathrm{hc}}{\lambda_{2}}=\frac{2 \mathrm{hc}}{\lambda_{1}}=16 \mathrm{eV}$
$\phi=2 \mathrm{eV} \quad \therefore \mathrm{K}^{\mathrm{E}} \mathrm{E}_{\max }=\frac{\mathrm{hc}}{\lambda}-\phi=14 \mathrm{eV}$
(50)
7.

$\mathrm{E}=\frac{\mathrm{hc}}{\lambda_{1}}=13.6\left[\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right]$
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda_{2}}=13.6\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]$
Dividing eq. (2) by (1),
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\frac{1}{4}-\frac{1}{9}}{\frac{1}{9}-\frac{1}{16}}=\frac{20}{7}$
(3). $\pi \log _{3}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{k} \pi, \mathrm{k} \in \mathrm{I}$;
$\log _{3}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{k} \Rightarrow \mathrm{x}=3^{-\mathrm{k}}$
Possible values of k are $-1,0,1,2,3, \ldots \ldots$.
$\mathrm{S}=(3+1)+\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \ldots . . \infty\right)$
$=4+\frac{(1 / 3)}{1-(1 / 3)}=4+\frac{1}{2}=\frac{9}{2}$
(3). $\left(\frac{1+2 \cos \theta+2 \sin \theta}{3}, \frac{\sqrt{3}+2 \sin \theta-2 \cos \theta}{3}\right)$

$\frac{\mathrm{x}}{3}=\frac{1+2 \cos \theta+2 \sin \theta}{3}$
$\Rightarrow \mathrm{x}=1+2 \cos \theta+2 \sin \theta$
$\frac{y}{3}=\frac{\sqrt{3}+2 \sin \theta-2 \cos \theta}{3}$
$\Rightarrow \quad \mathrm{y}=\sqrt{3}+2 \sin \theta-2 \cos \theta$
$(x-1)^{2}+(y-\sqrt{3})^{2}=8$
(3). $3 x^{2}+4 x y+4 y^{2}+2 x-2 y+1+\alpha=0$
$\Rightarrow \quad \mathrm{x} \underbrace{(3 \mathrm{x}+2 \mathrm{y}+1)}_{\text {vanishes }}+\mathrm{y} \underbrace{(2 \mathrm{x}+4 \mathrm{y}-1)}_{\text {vanishes }}$ $-y+x+1+\alpha=0$
$\Rightarrow \quad \mathrm{x}-\mathrm{y}+1+\alpha=0$
$\therefore \quad$ equations are
$3 x+2 y+1=0,2 x+4 y-1=0$ and $x-y+(1+\alpha)=0$
So, they will admit a unique solution, if

$$
\left|\begin{array}{ccc}
3 & 2 & 1 \\
2 & 4 & -1 \\
1 & -1 & 1+\alpha
\end{array}\right|=0 \Rightarrow \alpha=\frac{3}{8}
$$

(54) (4). Clearly, $\mathrm{m}_{\mathrm{CP}} \times \mathrm{m}_{\mathrm{AB}}=-1$
$\Rightarrow\left(\frac{\mathrm{k}-2}{\mathrm{~h}-3}\right) \times\left(\frac{\mathrm{k}-8}{\mathrm{~h}-1}\right)=-1$
$\therefore \quad$ Locus of (h, k) is
$(x-1)(x-3)+(y-2)(y-8)=0$

i.e., $x^{2}+y^{2}-4 x-10 y+19=0$
(1). Any element, is of the form of
$\frac{8!}{t_{1}!t_{2}!t_{3}!t_{4}!}\left(x^{2}\right)^{t_{1}}\left(\frac{1}{x^{2}}\right)^{t_{2}}(y)^{t_{3}}\left(\frac{1}{y}\right)^{t_{4}}$
where $t_{1}+t_{2}+t_{3}+t_{4}=8 ; t_{1} \geq 0$
The constant term occur when $t_{1}=t_{2}$ and $\mathrm{t}_{3}=\mathrm{t}_{4}$
So, $\mathrm{t}_{1}+\mathrm{t}_{3}=4 \Rightarrow(0,4) ;(4,0) ;(1,3)$, $(3,1) ;(2,2) \Rightarrow$ constant term:
$\frac{8!}{0!0!4!4!}+\frac{8!}{4!4!0!0!}+\frac{8!}{1!1!3!3!}+\frac{8!}{3!3!111!}+\frac{8!}{2!2!2!2!}$
$=(2 \times 70)+(2 \times 1120)+2520=4900$
(56) (3). Clearly, $(x, x) \in R \quad x \in W$,

So, R is reflexive.
Let $(x, y) \in R$ then $(y, x) \in R$ as x and y have atleast one letter in common.
So R is also symmetric.
But R is not transitive
e.g. let $\mathrm{x}=$ MILK
$\mathrm{y}=$ LIME
and $\mathrm{z}=$ ENERGY
then $(x, y) \in R$ and $(y, z) \in R$
but $(\mathrm{x}, \mathrm{z}) \notin \mathrm{R}$.]
(57)
(2). $f^{\prime}(x)=-\frac{2}{\sqrt{1-x^{2}}} \cdot \frac{x}{|x|}$
\Rightarrow not differentiable at $x=0$,
now $f^{\prime}(x)=\left[\begin{array}{c}-\frac{2}{\sqrt{1-x^{2}}} \text { for } x>0 \\ \frac{2}{\sqrt{1-x^{2}}} \text { for } x<0\end{array}\right.$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=(1-\mathrm{x})^{-3 / 2} \cdot(-2 \mathrm{x})<0$.
Also not differentiable at $x=0$
(58) (3). We know that if $k(x)=f(x) \cdot g(x)$, where $f(x)$ is differentiable at $x=a$ and $f(a)=0$ but $g(x)$ is continuous at $x=a$ then $k(x)$ is also derivable at $\mathrm{x}=\mathrm{a}$.
$\therefore \quad$ In options (1), (4), functions are differentiable at $\mathrm{x}=2$.
For option (2),
$f^{\prime}\left(2^{+}\right)=\underset{h \rightarrow 0}{\operatorname{Lim}} \frac{\sin h-h}{h}=0$
$f^{\prime}\left(2^{-}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\sin h-h}{-h}=0$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sin (|\mathrm{x}-2|)-|\mathrm{x}-2|$ is derivable at $\mathrm{x}=2$.
For option (3)
$f^{\prime}\left(2^{+}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\sin h+h}{h}=2$
and $f^{\prime}\left(2^{-}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\sin h+h}{-h}=-2$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sin (|\mathrm{x}-2|)+|\mathrm{x}-2|$
is non-derivable at $x=2$.
(59)
(3). $\because g(x)=(f(3 f(x)+6))^{3}$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=3(\mathrm{f}(3 \mathrm{f}(\mathrm{x})+6))^{2} \mathrm{f}^{\prime}(3 \mathrm{f}(\mathrm{x})+6) \cdot 3 \mathrm{f}^{\prime}(\mathrm{x})$
$\therefore \quad \mathrm{g}^{\prime}(0)=3(\mathrm{f}(3 \mathrm{f}(0)+6))^{2} \cdot \mathrm{f}^{\prime}(3 \mathrm{f}(0)+6) \cdot 3 \mathrm{f}^{\prime}(0)$
$=9(\mathrm{f}(-6+6))^{2} \mathrm{f}^{\prime}(-6+6) \mathrm{f}^{\prime}(0)$
$=9(\mathrm{f}(0))^{2}\left(\mathrm{f}^{\prime}(0)\right)^{2}=9 \times 4 \times 1=36$]
(3). We have, $\operatorname{Lim}_{x \rightarrow 0} \frac{\int_{0}^{x^{2}}\left(t^{2} \cos ^{5} t\right) d t}{x^{3}(x-\sin x)} \quad\left(\frac{0}{0}\right)$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{\int_{0}^{x^{2}}\left(t^{2} \cos ^{5} t\right) d t}{x^{6}\left(\frac{x-\sin x}{x^{3}}\right)}=6 \operatorname{Lim}_{x \rightarrow 0} \frac{\int_{0}^{x^{2}}\left(t^{2} \cos ^{5} t\right) d t}{x^{6}}$
$\left(\right.$ As, $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{x-\sin x}{x^{3}}\right)$
$\left.=\operatorname{Lim}_{x \rightarrow 0} \frac{x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \ldots \infty\right)}{x^{3}}=\frac{1}{6}\right)$
$=6\left(\frac{2 x \cdot x^{4} \cdot \cos ^{5}\left(x^{2}\right)}{6 x^{5}}\right)$
$=\operatorname{Lim}_{x \rightarrow 0} 2 \cos ^{5}\left(x^{2}\right)=2$
(61)
(2). $\mathrm{y}=\mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{x}=\mathrm{f}^{-1}(\mathrm{y}) \Rightarrow \mathrm{x}=\mathrm{g}(\mathrm{y})$

Given $y=f(x)=\int_{0}^{x} \frac{d t}{\sqrt{1+t^{3}}}$
$\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{3}}} \Rightarrow \frac{d x}{d y}=\sqrt{1+x^{3}}$
$g^{\prime}(y)=\sqrt{1+g^{3}(y)}$
$g^{\prime \prime}(y)=\frac{3 g^{2}(y) g^{\prime}(y)}{2 \sqrt{1+g^{3}(y)}}$
$\Rightarrow 2 g^{\prime \prime}(y)=3 g^{2}(y) \frac{g^{\prime}(y)}{\sqrt{1+g^{3}(y)}}$ $=3 g^{2}(y) \frac{\sqrt{1+g^{3} y}}{\sqrt{1+g^{3}(y)}}=3 g^{2}(y)$
$\Rightarrow \quad 2 \mathrm{~g}^{\prime \prime}(\mathrm{y})=3 \mathrm{~g}^{2}(\mathrm{y})$
(62) (1). put $\ln \mathrm{x}=\mathrm{t} \Rightarrow \mathrm{x}=\mathrm{e}^{\mathrm{t}} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$\mathrm{I}=\int_{-\infty}^{\infty} f\left(\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}\right) \frac{\mathrm{t}}{\mathrm{e}^{\mathrm{t}}} \mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$=\int_{-\infty}^{\infty} f\left(\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}\right) \mathrm{tdt}=0$
(as the function is odd)
Alternatively-1: put $\mathrm{x}=\tan \theta$;
$\int_{0}^{\pi / 2} f\left(\tan \theta+\frac{1}{\tan \theta}\right) \frac{\ln \tan \theta}{\tan \theta} \cdot \sec ^{2} \theta \mathrm{~d} \theta$
$=\int_{0}^{\pi / 2} f\left(\tan \theta+\frac{1}{\tan \theta}\right) \frac{\ln \tan \theta}{\sin \theta \cos \theta} \mathrm{d} \theta$

Alternatively-2:

Put $\mathrm{x}=1 / \mathrm{t} \Rightarrow \mathrm{I}=-\mathrm{I} \Rightarrow 2 \mathrm{I}=0 \Rightarrow \mathrm{I}=0$
(63) (4). A is non singular $\operatorname{det} \mathrm{A} \neq 0$

Given $\mathrm{AB}-\mathrm{BA}=\mathrm{A}$
Hence $\mathrm{AB}=\mathrm{A}+\mathrm{BA}=\mathrm{A}(\mathrm{I}+\mathrm{B})$
$\operatorname{det} . \mathrm{A} \cdot \operatorname{det} . \mathrm{B}=\operatorname{det} . \mathrm{A} \cdot \operatorname{det} .(\mathrm{I}+\mathrm{B})$
($\operatorname{det} \mathrm{A} \neq 0$)
det. $B=\operatorname{det} .(I+B)$
(as A is non singular)
Again $\mathrm{AB}-\mathrm{A}=\mathrm{BA}$
$\mathrm{A}(\mathrm{B}-\mathrm{I})=\mathrm{BA}$
$(\operatorname{det} . \mathrm{A}) \cdot \operatorname{det} .(\mathrm{B}-\mathrm{I})=\operatorname{det} . \mathrm{B} \cdot \operatorname{det} . \mathrm{A}$
$\Rightarrow \quad \operatorname{det} .(B-I)=\operatorname{det} .(B)$
From (1) and (2)
$\operatorname{det} .(B-I)=\operatorname{det} .(B+I)$
(1). Note that the line $\frac{y}{b}+\frac{z}{c}=1, x=0$ is in $y-z$ plane while the lines $\frac{x}{a}-\frac{z}{c}=1, y=0$ is in the x-z plane
$1^{\text {st }}$ line intersecting the y and z axis at $(0, b, 0)$ and $(0,0, c)$ respectively. Hence its equation is $\quad \vec{r}=b \hat{j}+\lambda(b \hat{j}-c \hat{k})$
$\|\left.\right|^{l y} 2^{\text {nd }}$ line intersecting the x and z axis at $(\mathrm{a}, 0,0)$ and $(0,0,-\mathrm{c})$ respectively. Hence its equation is $\overrightarrow{\mathrm{r}}=a \hat{i}+\mu(a \hat{i}+c \hat{k})$
A vector perpendicular to both $\mathrm{b} \hat{\mathrm{j}}-\mathrm{c} \hat{\mathrm{k}}$ and $a \hat{i}+c \hat{k}$ is $=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & b & -c \\ a & 0 & c\end{array}\right|$

$\overrightarrow{\mathrm{v}}=\mathrm{bc} \hat{\mathrm{i}}-\mathrm{ac} \hat{\mathrm{j}}-\mathrm{ab} \hat{\mathrm{k}}$
S.D. $=2 d=\mid$ Pr ojection of $\overrightarrow{A B}$ on $\vec{v} \mid$
$=\left|\frac{\overrightarrow{A B} \cdot \vec{v}}{|\vec{v}|}\right|=\left|\frac{(a \hat{i}-b \hat{j}) \cdot(b c \hat{i}-a c \hat{j}-a b \hat{k})}{\sqrt{b^{2} c^{2}+a^{2} c^{2}+a^{2} b^{2}}}\right|$
$2 d=\frac{a b c+b a c}{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=(\mathrm{a}-1) \hat{\mathrm{i}}+(2-\mathrm{a}) \hat{\mathrm{j}}+0 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{BC}}=0 \hat{\mathrm{i}}+(\mathrm{b}-2) \hat{\mathrm{j}}+(3-\mathrm{b}) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{AB}}=\lambda \overrightarrow{\mathrm{BC}}=\lambda(0 \hat{\mathrm{i}}+(\mathrm{b}-2) \hat{\mathrm{j}}+(3-\mathrm{b}) \hat{\mathrm{k}})
\end{aligned}
$$

$$
\begin{equation*}
\text { where } \lambda \neq 0 \tag{1}
\end{equation*}
$$

Hence $a-1=0 \Rightarrow a=1$
$2-\mathrm{a}=\lambda(\mathrm{b}-2)$
and $3-b=0 \Rightarrow b=3$
with $\mathrm{a}=1$ and $\mathrm{b}=3, \lambda=1$
Hence $a+b=4$
(66) (2).

Given $\int_{0}^{4} f(x) d x-\int_{0}^{4} g(x) d x=10$
$\left(\mathrm{A}_{1}+\mathrm{A}_{3}+\mathrm{A}_{4}\right)-\left(\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right)=10$
$\mathrm{A}_{1}-\mathrm{A}_{2}=10$
Again $\int_{2}^{4} g(x) d x-\int_{2}^{4} f(x) d x=5$
$\left(\mathrm{A}_{2}+\mathrm{A}_{4}\right)-\mathrm{A}_{4}=5 ; \mathrm{A}_{2}=5$
$\therefore \quad(1)+(2), \mathrm{A}_{1}=15$
(67)

$\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right) ; \mathrm{P}^{\prime}\left(-\mathrm{bt}_{2}{ }^{2}, 2 \mathrm{bt}_{2}\right)$
(1). $\mathrm{P}\left(\frac{\mathrm{a}}{\sqrt{2}}, \frac{\mathrm{~b}}{\sqrt{2}}\right) \quad \mathrm{p}_{1}=\frac{\sqrt{2} \mathrm{ab}}{\mathrm{a}^{2}+\mathrm{b}^{2}}$
$\mathrm{p}_{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\sqrt{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)} \Rightarrow \mathrm{p}_{1} \mathrm{p}_{2}=$ result
$\mathrm{T}: \frac{\mathrm{x} \cos \theta}{\mathrm{a}}+\frac{\mathrm{y} \sin \theta}{\mathrm{b}}=1$
$p_{1}=\left|\frac{a b}{\sqrt{\mathrm{~b}^{2} \cos ^{2} \theta+\mathrm{a}^{2} \sin ^{2} \theta}}\right|$
$\mathrm{N}_{1}: \frac{\mathrm{ax}}{\cos \theta}-\frac{\text { by }}{\sin \theta}=\mathrm{a}^{2}-\mathrm{b}^{2}$
$p_{2}=\left|\frac{\left(a^{2}-b^{2}\right) \sin \theta \cos \theta}{\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}}\right|$

$\mathrm{p}_{1} \mathrm{p}_{2}=\frac{\mathrm{ab}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{2\left(\frac{\mathrm{a}^{2}}{2}+\frac{\mathrm{b}^{2}}{2}\right)}$ when $\theta=\pi / 4 ;$
$p_{1} p_{2}=\frac{a b\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}$
(69)
(1). $\mathrm{e}_{1}^{2}=1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=1+\frac{12}{4}=4 \quad \Rightarrow \mathrm{e}_{1}=2$

Now $\frac{1}{\mathrm{e}_{1}^{2}}+\frac{1}{\mathrm{e}_{2}^{2}}=1 ; \frac{1}{\mathrm{e}_{2}^{2}}=1-\frac{1}{4}=\frac{3}{4}$
$\Rightarrow \quad \mathrm{e}_{2}^{2}=\frac{4}{3} \Rightarrow \mathrm{e}_{2}=\frac{2}{\sqrt{3}}$

$$
\begin{aligned}
& d=\frac{a b c}{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}} \\
& \left.\therefore \quad d^{2}\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)=a^{2} b^{2} c^{2}\right] \\
& \frac{1}{\mathrm{~d}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}} \\
& \text { (2). } A(1, a, b) ; B(a, 2, b) ; C(a, b, 3) \\
& 2 \mathrm{at}_{1}=2 \mathrm{bt}_{2}=\mathrm{k} ; \mathrm{at}_{1}{ }^{2}-\mathrm{bt}_{2}{ }^{2}=2 \mathrm{~h} \\
& a\left(\frac{k^{2}}{4 a^{2}}\right)-b\left(\frac{k^{2}}{4 b^{2}}\right)=2 h \\
& \mathrm{y}^{2}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)=8 \mathrm{x} \Rightarrow \mathrm{y}^{2}=\left(\frac{8 \mathrm{ab}}{\mathrm{~b}-\mathrm{a}}\right) \mathrm{x}
\end{aligned}
$$

(70) (3). $p \Rightarrow q$ is false only when p is true and q is false.
$p \Rightarrow q$ is false when p is true and $q \vee r$ is false, and $q \vee r$ is false when both q and r are false.
(71)
2. $\sin x=\sin 2 y$
and $\cos x=\sin y$
$\therefore \quad(1)^{2}+(2)^{2} \Rightarrow 1=\sin ^{2} y\left(1+4 \cos ^{2} y\right)$
$\therefore \quad \cos ^{2} y=4 \sin ^{2} y \cdot \cos ^{2} y$
$\Rightarrow \quad \cos ^{2} \mathrm{y}\left(4 \sin ^{2} \mathrm{y}-1\right)=0$
$\therefore \quad y=\frac{\pi}{2}$ or $\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
if $y=\frac{\pi}{2}$ then $x=0$
if $y=\frac{\pi}{6}$ then $x=\frac{\pi}{3}$ ل
$\Rightarrow 2$ ordered pairs. i.e.,
$\left(\mathrm{x}=0, \mathrm{y}=\frac{\pi}{2}\right)$ or $\left(\mathrm{x}=\frac{\pi}{3}, \mathrm{y}=\frac{\pi}{6}\right)$.
(72)

1. $P_{n}={ }^{n-2} C_{3}$
$\mathrm{Q}_{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{3}-[\mathrm{n}+\mathrm{n}(\mathrm{n}-4)]$
or
$\mathrm{Q}_{\mathrm{n}}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{1} \cdot{ }^{\mathrm{n}-4} \mathrm{C}_{2}}{3}$
$\mathrm{P}_{\mathrm{n}}-\mathrm{Q}_{\mathrm{n}}=6 \Rightarrow \mathrm{n}=10$
(73)

$\mathrm{y}=\mathrm{x}^{\mathrm{n}} ; \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{nx}^{\mathrm{n}-1}=\mathrm{na}^{\mathrm{n}-1}$
slope of normal $=-\frac{1}{\mathrm{na}^{\mathrm{n}-1}}$
Equation of normal $y-a^{n}=-\frac{1}{n a^{n-1}}(x-a)$
Put $\mathrm{x}=0$ to get y -intercept
$y=a^{n}+\frac{1}{n a^{n-2}} ;$ Hence $b=a^{n}+\frac{1}{n a^{n-2}}$
$\operatorname{Lim}_{a \rightarrow 0} b=\left[\begin{array}{cc}0 & \text { if } n<2 \\ \frac{1}{2} & \text { if } n=2 \\ \infty & \text { if } n>2\end{array}\right.$
(74) 3. A : exactly one child

B : exactly two children
C : exactly 3 children
$\mathrm{P}(\mathrm{A})=\frac{1}{4} ; \mathrm{P}(\mathrm{B})=\frac{1}{2} ; \mathrm{P}(\mathrm{C})=\frac{1}{4}$

E : couple has exactly 4 grandchildren
$P(E)=P(A) \cdot P(E / A)+P(B) \cdot P(E / B)$
$+\mathrm{P}(\mathrm{C}) \cdot \mathrm{P}(\mathrm{E} / \mathrm{C})$
$=\underbrace{\frac{1}{4} \cdot 0}_{\begin{array}{c}\text { one child }\end{array}}+\frac{1}{2}[\underbrace{\left(\frac{1}{2}\right)^{2}}_{2 / 2}+\underbrace{\left(\frac{1}{4} \cdot \frac{1}{4}\right) \cdot 2}_{(1,3) \text { or }(3,1)}]$ and have
4 children
(not possible)

$$
\begin{aligned}
& +\frac{1}{4}[3 \underbrace{\left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2}\right)}_{1}][\\
& =\frac{1}{8}+\frac{1}{16}+\frac{3}{128}=\frac{27}{128}
\end{aligned}
$$

||ly $2 / 2$ denotes each child having two children; ' 0 ' indicated that the child can have a maximum of 3 children $2 \cdot \frac{1}{4} \cdot \frac{1}{4}$ denotes each child having 1 and 3 or 3 and 1 children
$=\frac{16}{128}+\frac{8}{128}+\frac{3}{128}=\frac{27}{128}$

1. We know that

If $y=\frac{x}{h}$ then $\sigma_{y}=\frac{\sigma_{x}}{|h|}$
Since each observation is divided by 4
$\therefore \quad$ The S.D. of new set of observations will be $\frac{4}{4}=1$

