JEE MAIN 2020 SOLUTIONS

STANDARD ANSWER KEY											
Q	1	2	3	4	5	6	7	8	9	10	11
Α	1	2	3	1	3	3	1	3	3	2	1
Q	12	13	14	15	16	17	18	19	20	21	22
Α	2	4	2	3	2	2	4	1	2	4	3
Q	23	24	25	26	27	28	29	30	31	32	33
Α	4	6	0	2	2	2	4	4	1	2	4
Q	34	35	36	37	38	39	40	41	42	43	44
Α	1	3	3	2	4	2	4	2	3	1	2
Q	45	46	47	48	49	50	51	52	53	54	55
Α	4	4	2	7	4	7	3	3	3	4	1
Q	56	57	58	59	60	61	62	63	64	65	66
Α	3	2	3	3	3	2	1	4	1	2	2
Q	67	68	69	70	71	72	73	74	75		
Α	1	1	1	3	2	1	2	3	1		

(1) (1). $CH_3COOH+NaOH \rightleftharpoons CH_3COONa+H_2O$ On addition of NaOH to CH₃COOH solution, 60% of the acid is neutralised i.e. after reaction 40% of acid & 60% of salt are present which is an acidic buffer solution.

$$pH = pK_a + \log \frac{[Salt]}{[Acid]} = 4.7 + \log \frac{60}{40}$$

= 4.88

(2) (2).
$$A = 56, D = 58$$

(3). $NO_2^+: O = N^+ = O$ (sp, linear) $CO_2: O = C = O$ (linear) (3)

(1). $(\sigma 1s)^2 < (\sigma 1s^*)^2 < (\sigma 2s^*)^2 < (\sigma 2s^*)^2$ $< (\pi 1p_x)^2 = (\pi 2p_y^*)^2$ All electrons are paired in C₂ molecules hence (4)

 C_2 will be diamagnetic.

(5) (3). Option three have -OH group gauche (stabilised by H-bonding) and - CH₃ group anti (minimum repulsion). So, it is most stable.

(6) (3).

$$\begin{array}{c} \operatorname{CH}_{3} & \operatorname{CI}_{1} \\ \operatorname{CH}_{3} - \operatorname{CP}_{1} & \operatorname{CH}_{2} - \operatorname{OH} \xrightarrow{\operatorname{Conc.HCl}}_{+\operatorname{ZnCl}_{2}} \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{CH}_{2} - \operatorname{CH}_{3} \\ \operatorname{CH}_{3} & \operatorname{-H}_{2}\operatorname{O} \mid_{\operatorname{H}^{\oplus}} \end{array}$$

$$CH_{3} \xrightarrow{\oplus} CH_{2} \xrightarrow{\oplus} CH_{3} \xrightarrow{\oplus} CH_{3} \xrightarrow{\oplus} CH_{3} \xrightarrow{\oplus} CH_{2} \xrightarrow{\oplus} CH_{3} \xrightarrow{\oplus} CH_{2} \xrightarrow{\oplus} CH_{3}$$

(7) (1). Me - CH₂ - C = CH
$$\xrightarrow{\text{NH}_3/\text{NaNH}_2}$$

$$Me - CH_2 - C \equiv CNa \xrightarrow{Et-Br}$$

$$Me - CH_2 - C \equiv C - Et$$
(b)

Flask II: 100 ml of 0.6 M solution of A $t_{1/2} = ?$ \downarrow 0.3 M $t_{1/2} = 4$ hrs. [For 1^{st} order reaction $t_{1/2}$ does not depends on concentration] (3). Given: (9) (i) $Cu^{2+} + 2e^{-} \rightarrow Cu$; $E_1^{\circ} = 0.337 V$; $\Delta G_1^{\circ} = -2F E_1^{\circ}$ (ii) $Cu^{2+} + e^{-} \rightarrow Cu^{+}$; $E_2^{\circ} = 0.153 V$: $\Delta G_2^{\circ} = -1F E_2^{\circ}$ (iii) $\operatorname{Cu}^{+} + e^{-} \rightarrow \operatorname{Cu} ; \operatorname{E}_{3}^{\circ} = ?; \Delta \operatorname{G}_{3}^{\circ} = -1\operatorname{F} \operatorname{E}_{3}^{\circ}$ Equation (i) – equation (ii) will gives equation (iii) $\Delta G_{1}^{\circ} - \Delta G_{2}^{\circ} = \Delta G_{3}^{\circ}$ -2F E₁° + F E₂° = -F E₃° -F (2E₁° - E₂°) = -F E₃° $\therefore E_{3}^{\circ} = 2E_{1}^{\circ} - E_{2}^{\circ}$ (2). B_2H_6 (diborane) (10)

All the hydrogen atoms are not in the same plane.

(11) (1). At. no. $58 \xrightarrow{4 \\ 2 \\ \text{He}(\alpha)} 56 \xrightarrow{6 \\ (\text{III-A})} 56$

At. no. 90
$$\xrightarrow{4 \ 2 \ \text{He}(\alpha)} 88$$
 (III-A)

(12) (2).
$$[Cu(NH_3)_2]^+ \Rightarrow Cu^{+2}$$

 $NH_3 = SFL$ so pairing possible.

(13) (4).
$$CH_3 - C \equiv N + CH_3 - Mg - I$$

$$\xrightarrow{H_2O} CH_3 - \overrightarrow{C} - CH_3$$

(15) (3).

$$CH_{3} - C - O - C_{2}H_{5} \xrightarrow[H_{2}N - NH_{2}]{(a)} CH_{3} \xrightarrow[H_{2}N - NH_{2}]{(b)} CH_{3} \xrightarrow[H_{2}N - NH_{2}]{(c)} CH_{3} \xrightarrow$$

(16) (2).
$$R - C \equiv N \xrightarrow{\text{Reduction}} R - CH_2 - NH_2$$

$$R - C \equiv N \xrightarrow{(i) CH_3MgBr}_{(ii) H_2O} R - C - CH_3$$

$$RNC \xrightarrow{\text{Hydrolysis}} R - NH_2 + HCOOH$$
(c)

$$R - NH_2 \xrightarrow{HNO_2} R \xrightarrow{OH+} N_2$$

(17) (2). Sucrose is a disaccharide of α -D-Glucopyranose and β -D-fructofuranose.

(18) (4).

$$nCH_{2} = C - CH = CH_{2} \xrightarrow{Polymersation} \qquad \begin{bmatrix} CH_{2} - C = CH - CH_{2} \\ \\ Cl \\ Chloroprene \end{bmatrix}_{n}^{n}$$
Neoprene [Artificial rubber]

(19) (1).
$$H_2SO_4 + 2NH_3 \rightarrow (NH_4)_2SO_4$$

 $10mL \text{ of } 1MH_2SO_4 = 10m \text{ mol}$
 $[\because M \times V_{(mL)} = m \text{ mol}]$
 $NH_3 \text{ consumed} = 20m \text{ mol}$
 $Acid used for the absorption of ammonia$
 $= 20 - 10 \text{ m mol}$
 $= 10 \text{ mL of } 2N \text{ (or } 1 \text{ M) } H_2SO_4$
 $\%N = \frac{1.4 \times N \times V}{W} = \frac{1.4 \times 10 \times 2}{0.75} = 37.33\%$

JEE MAIN FT-5-Sol

┥┝

М

Ť

 $\frac{\pi m}{16}$ $\frac{L}{\sqrt{2}}$

from origin

 $V_1 = \frac{2\pi R_1}{1h} = 2\pi \times 10^4 \text{ km/hr}$

$$V_2 = \frac{2\pi R_2}{8h} = \pi \times 10^4 \text{ km/hr}$$

At closest separation

$$\omega = \frac{V_{rel} \perp \text{ to line joining}}{\text{length of line journing}}$$

$$=\frac{\pi\times10^4\,\mathrm{km/hr}}{3\times10^4\,\mathrm{km}}=\frac{\pi}{3}\,\mathrm{rad/hr}.$$

(4). When source is at origin, the observer receives the sound emitted by the source, when it was at P.

Such that
$$\cos\theta = \frac{50t}{200t} = \frac{1}{4}$$

 $v = \frac{v_0(v)}{v - v_s \cos\theta} = \frac{90 \times 200}{200 - \frac{50}{4}} = 96 \text{ Hz}$

4) (1). For chamber :
$$\frac{dQ}{dt} = k(\theta_1 - \theta_0) = k(\theta_2 - \theta_0)$$

$$\Rightarrow \theta_1 = \theta_2$$

For heater
$$\frac{dQ}{dt} = e_1 A\sigma (T_1^4 - \theta_1^4) = e_2 A\sigma (T_2^4 - \theta_2^4)$$
$$e_1 > e_2 \Rightarrow T_1 < T_2$$
(3). For isothermal process $V_f = 2V_0$
$$\therefore P_f = P_0/2$$
For isobaric process

$$V_{\rm f} = V_0/2$$
; $T_{\rm f} = \frac{V_0}{2 \times 2V_0} \cdot T_0 = \frac{T_0}{4}$

For $P \propto V$ process

P–V must be straight line

 $T \propto V^2 \implies V-T$ must be parabolic $P^2 \propto T \implies P-T$ must be parabolic

36) (3). In the first diagram where A & B are there B is short circuit only A in the circuit.

$$\Rightarrow$$
 R₁=R₂

But
$$m_1 \neq m_2 \Longrightarrow \omega_1 = \frac{qB}{m_1} \neq \frac{qB}{m_2}$$

 ω is not equal. So collision does not occur at \Rightarrow diametrically opposite point.

(38) (4). Consider the expression for the current rising exponentially in the LR circuit. The time constant is (L/R). In this case the curve (1) is rising faster than curve (2) indicating that $(L_1 / R_1) < (L_2 / R_2)$. However, in both the cases the maximum current is the same and equal to (V/R_1) or (V/R_2) , which means $R_1 = R_2$

$$\rho = A(H-1) = 4 \times \frac{1}{2} = 2^{\circ}$$

- Total deviation = 90° (due to reflection) $+2^{\circ}$ (due to prism) $=92^{\circ}$ but net deviation should be 90°
- Due to reflection = $88^\circ = \pi 2i \Longrightarrow i = 46^\circ$ *.*..
- i.e. Mirror must rotated by 1° anticlockwise.

(40) (4). Position of
$$10^{\text{th}} \text{ maxima} = \frac{10\lambda D}{d} = 3 \text{ cm}$$

(w.r. to central maxima)

$$\frac{\lambda D}{d} = \frac{3}{10} \, \mathrm{cm}$$

New fringe width = $\frac{3}{10 \times \mu}$

New position of 10th maxima

$$= \frac{3}{10 \times 1.5} \times 10 = 2 \text{ cm}$$
 (47)

- Position of central maxima = 2cm $10^{\text{th}} \text{ maxima} = 4 \text{ cm}$
- *.*..
- (2). For reverse bias : N end of PN junction should (41) be connected to high potential wrt P end.
- (3). Modulation factor determines both the (42) strength and quality of the signal.

(43) (1).
$$\lambda = \frac{h}{p}$$
; $\frac{d\lambda}{\lambda} = -\frac{dp}{p}$; $\frac{0.5}{100} = \frac{p}{p'}$
 $\Rightarrow p' = 200p$
(44) (2). $N_1 = N_0 e^{-\lambda t}$; $N_1 = \frac{1}{3}N_0$
 $\frac{N_0}{2} = N_0 e^{-\lambda t_2}$ (1)

$$N_2 = \frac{2}{3}N_0$$
; $\frac{2}{3}N_0 = N_0 e^{-\lambda t_1}$ (2)

From eq. (1) and (2)

3

$$\frac{1}{2} = e^{-\lambda (t_2 - t_1)} ; \ \lambda (t_2 - t_1) = \ln 2$$

$$t_2 - t_1 = \frac{\ln 2}{\lambda} = T_{1/2} = 50 \text{ days}$$

(45) (4).
$$Q = 2$$
 (BE of He) – (BE of Li)
= $2 \times (4 \times 7.06) - (7 \times 5.60)$
= $56.48 - 39.2 = 17.3$ MeV

(46) 4.
$$fs_{max} = \mu mg = 0.15 \times 20 \times 10 = 30 N$$

Distance travelled by truck

$$=\frac{1}{2} \times 2 (4)^2 = 16 \text{ m}$$

It is clear from the figure that L/3 path difference represent $\pi/2$ phase difference.

7L/9 path difference represents $7\pi/6$ phase ... difference.

Lets say amplitude of pressure variation be A (5 then amplitude at $\frac{7L}{9}$ will be $\left|A\sin\frac{7\pi}{6}\right|$ The ratio of pressure amplitude at Q to the maximum pressure amplitude is 1:2. $(x+13) \times 3 = (27 - x) \times 1$ (48) 7. $\begin{array}{c|c}
x + 13 \\
13V \\
13V \\
3\mu F \\
1\mu F \\
a \\
27
\end{array}$ (5 3x + 39 = -x + 27; x = -3So $V_a - V_b = 27 - (x + 13) = 17$ (49) 4. $\phi = 2eV; \frac{hc}{\lambda_1} = 8eV; T_2 = 2T_1$ If λ_{11} is the wavelength corresponding to maximum intensity at $T_1 \& T_2$ at T_2 ; Then $\lambda_2 = \lambda_1/2$ (by wein's displacement Law) $\frac{hc}{\lambda_2} = \frac{2hc}{\lambda_1} = 16eV$ $\phi = 2eV$ \therefore K.E._{max} $= \frac{hc}{\lambda} - \phi = 14eV$ (5 7. $\frac{E_1 = \frac{hc}{\lambda_1}}{E_2 = \frac{hc}{\lambda_2}} n = 3$ (50) $E = \frac{hc}{\lambda_1} = 13.6 \left| \frac{1}{(3)^2} - \frac{1}{(4)^2} \right| \qquad \dots \dots (1)$ $E = \frac{hc}{\lambda_2} = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] \qquad \dots \dots (2)$ Dividing eq. (2) by (1), (5 $\frac{\lambda_1}{\lambda_2} = \frac{\frac{1}{4} - \frac{1}{9}}{\frac{1}{2} - \frac{1}{9}} = \frac{20}{7}$

51) (3).
$$\pi \log_3\left(\frac{1}{x}\right) = k\pi$$
, k ∈ I;
 $\log_3\left(\frac{1}{x}\right) = k \Rightarrow x = 3^{-k}$
Possible values of k are -1, 0, 1, 2, 3,
 $S = (3 + 1) + \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots \infty\right)$
 $= 4 + \frac{(1/3)}{1 - (1/3)} = 4 + \frac{1}{2} = \frac{9}{2}$
52) (3). $\left(\frac{1+2\cos\theta + 2\sin\theta}{3}, \frac{\sqrt{3} + 2\sin\theta - 2\cos\theta}{3}\right)$
 $C(0,0) \xrightarrow{G} H(x, y)$
 $\frac{x}{3} = \frac{1 + 2\cos\theta + 2\sin\theta}{3}$
 $\Rightarrow x = 1 + 2\cos\theta + 2\sin\theta$
 $\frac{y}{3} = \frac{\sqrt{3} + 2\sin\theta - 2\cos\theta}{3}$
 $\Rightarrow y = \sqrt{3} + 2\sin\theta - 2\cos\theta$
 $(x - 1)^2 + (y - \sqrt{3})^2 = 8$
53) (3). $3x^2 + 4xy + 4y^2 + 2x - 2y + 1 + \alpha = 0$
 $\Rightarrow x(3x + 2y + 1) + y(2x + 4y - 1)$
vanishes
 $-y + x + 1 + \alpha = 0$
 \therefore equations are
 $3x + 2y + 1 = 0, 2x + 4y - 1 = 0$ and
 $x - y + (1 + \alpha) = 0$
So, they will admit a unique solution, if
 $\begin{vmatrix} 3 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & -1 & 1 + \alpha \end{vmatrix} = 0 \Rightarrow \alpha = \frac{3}{8}$
54) (4). Clearly, m_{CP} × m_{AB} = -1
 $\Rightarrow (\frac{k-2}{h-3}) \times (\frac{k-8}{h-1}) = -1$
 \therefore Locus of (h, k) is
 $(x - 1)(x - 3) + (y - 2)(y - 8) = 0$

In options (1), (4), functions are differentiable

...

$$\begin{array}{c} C (3, 2) \\ \hline \\ A (h, k) \\ \end{array} \\ \begin{array}{c} C (3, 2) \\ \hline \\ B \\ \hline \\ M (1, 8) \\ \end{array}$$

i.e., $x^2 + y^2 - 4x - 10y + 19 = 0$ (55) (1). Any element, is of the form of $\frac{8!}{t_1!t_2!t_3!t_4!} (x^2)^{t_1} (\frac{1}{x^2})^{t_2} (y)^{t_3} (\frac{1}{y})^{t_4}$ where $t_1 + t_2 + t_3 + t_4 = 8$; $t_1 \ge 0$ The constant term occur when $t_1 = t_2$ and $t_3 = t_4$ So, $t_1 + t_3 = 4 \implies (0, 4)$; (4, 0); (1, 3), (3, 1); $(2, 2) \implies$ constant term: $\frac{8!}{0!0!4!4!} + \frac{8!}{4!4!0!0!} + \frac{8!}{1!1!3!3!} + \frac{8!}{3!3!1!1!} + \frac{8!}{2!2!2!2!}$

$$= (2 \times 70) + (2 \times 1120) + 2520 = 4900$$
(56) (3). Clearly, $(x, x) \in R \quad \forall x \in W$,
So, R is reflexive.
Let $(x, y) \in R$ then $(y, x) \in R$ as x and y
have atleast one letter in common.
So R is also symmetric.
But R is not transitive
e.g. let $x = MILK$
 $y = LIME$
and $z = ENERGY$
then $(x, y) \in R$ and $(y, z) \in R$
but $(x, z) \notin R$.]

(57) (2).
$$f'(x) = -\frac{2}{\sqrt{1-x^2}} \cdot \frac{x}{|x|}$$

 \Rightarrow not differentiable at x = 0,

now f'(x) =
$$\begin{bmatrix} -\frac{2}{\sqrt{1-x^2}} & \text{for } x > 0 \\ \frac{2}{\sqrt{1-x^2}} & \text{for } x < 0 \\ \frac{2}{\sqrt{1-x^2}} & \text{for } x < 0 \end{bmatrix}$$

Also not differentiable at x = 0

(58) (3). We know that if $k(x) = f(x) \cdot g(x)$, where f(x) is differentiable at x=a and f(a)=0 but g(x) is continuous at x = a then k(x) is also derivable at x = a.

at x = 2.
For option (2),
f' (2⁺) =
$$\lim_{h \to 0} \frac{\sin h - h}{h} = 0$$

f' (2⁻) = $\lim_{h \to 0} \frac{\sin h - h}{-h} = 0$
 $\Rightarrow f(x) = \sin (|x - 2|) - |x - 2|$ is derivable at
x = 2.
For option (3)
f'(2⁺) = $\lim_{h \to 0} \frac{\sin h + h}{h} = 2$
and f'(2⁻) = $\lim_{h \to 0} \frac{\sin h + h}{-h} = -2$
 $\Rightarrow f(x) = \sin (|x - 2|) + |x - 2|$
is non-derivable at x = 2.
(59) (3)... g(x) = (f(3f(x) + 6))^3
 $\Rightarrow g'(x) = 3(f(3f(x) + 6))^2 f'(3f(x) + 6) \cdot 3f'(x)$
 $\therefore g'(0) = 3(f(3f(0) + 6))^2 \cdot f'(3f(0) + 6) \cdot 3f'(0)$
 $= 9(f(-6 + 6))^2 f'(-6 + 6) f'(0)$
 $= 9(f(0))^2 (f'(0))^2 = 9 \times 4 \times 1 = 36$]
(60) (3). We have, $\lim_{x \to 0} \frac{\int_{x \to 0}^{x^2} (t^2 \cos^5 t) dt}{x^3 (x - \sin x)} = (\frac{0}{0})$

$$\lim_{x \to 0} \frac{\int (t^2 \cos^3 t) dt}{x^6 \left(\frac{x - \sin x}{x^3}\right)} = 6 \lim_{x \to 0} \frac{\int (t^2 \cos^3 t) dt}{x^6}$$
$$\left(As \lim_{x \to 0} \left(\frac{x - \sin x}{x^3} \right) \right)$$

$$\begin{cases} \operatorname{As,} \lim_{x \to 0} \left(\frac{x - \sin x}{x^3} \right) \\ = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \right)}{x^3} = \frac{1}{6} \end{cases}$$

=

$$= 6 \left(\frac{2x \cdot x^4 \cdot \cos^5(x^2)}{6x^5} \right)$$

$$= \lim_{x \to 0} 2\cos^5(x^2) = 2$$
(61) (2). $y = f(x) \Rightarrow x = f^{-1}(y) \Rightarrow x = g(y)$
Given $y = f(x) = \int_0^x \frac{dt}{\sqrt{1 + t^3}}$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 + x^3}} \Rightarrow \frac{dx}{dy} = \sqrt{1 + x^3}$$

$$g'(y) = \sqrt{1 + g^3(y)}$$

$$g''(y) = \frac{3g^2(y)g'(y)}{2\sqrt{1 + g^3(y)}}$$

$$\Rightarrow 2g''(y) = 3g^2(y) \frac{g'(y)}{\sqrt{1 + g^3(y)}}$$

$$= 3g^2(y) \frac{\sqrt{1 + g^3y}}{\sqrt{1 + g^3(y)}} = 3g^2(y)$$
(62) (1). put $\ln x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$

$$I = \int_{-\infty}^{\infty} f(e^t + e^{-t}) \frac{t}{e^t} e^t dt$$

$$= \int_{-\infty}^{\infty} f(e^t + e^{-t}) t dt = 0$$
(as the function is odd)
Alternatively-1: put x = tan θ ;

$$\int_{0}^{\pi/2} f(\tan\theta + \frac{1}{\tan\theta}) \frac{\ln \tan\theta}{\tan\theta} \cdot \sec^2\theta \, d\theta$$
$$= \int_{0}^{\pi/2} f(\tan\theta + \frac{1}{\tan\theta}) \frac{\ln \tan\theta}{\sin\theta\cos\theta} \, d\theta$$

Alternatively-2: Put $x = 1/t \Rightarrow I = -I \Rightarrow 2I = 0 \Rightarrow I = 0$ (63) (4). A is non singular det $A \neq 0$ Given AB - BA = AHence AB = A + BA = A(I + B)

det. A
$$\cdot$$
 det. B = det. A \cdot det. (I + B)
(det A \neq 0)
det. B = det. (I + B)(1)
(as A is non singular)
Again AB - A = BA
A(B - I) = BA
(det. A) \cdot det. (B - I) = det. B \cdot det. A
 \Rightarrow det. (B - I) = det. (B)(2)
From (1) and (2)
det. (B - I) = det. (B + I)

(64) (1). Note that the line $\frac{y}{b} + \frac{z}{c} = 1$, x = 0 is in y-z

plane while the lines $\frac{x}{a} - \frac{z}{c} = 1, y = 0$ is in the

x-z plane

 1^{st} line intersecting the y and z axis at (0, b, 0) and (0, 0, c) respectively. Hence its equation

is
$$\vec{r} = b\hat{j} + \lambda(b\hat{j} - c\hat{k})$$
(1)

 $|||^{ly} 2^{nd} \text{ line intersecting the x and z axis at}$ $(a, 0, 0) and (0, 0, - c) respectively. Hence its equation is <math>\vec{r} = a\hat{i} + \mu(a\hat{i} + c\hat{k}) \quad \dots (2)$

A vector perpendicular to both b $\hat{j}\!-\!c\,\hat{k}$ and

$$a\hat{i} + c\hat{k} is = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & b & -c \\ a & 0 & c \end{vmatrix}$$

$$\overrightarrow{A(b\hat{j})} \qquad \overrightarrow{b\hat{j} - c\hat{k}}$$

$$\overrightarrow{v} = bc\hat{i} - ac\hat{j} - ab\hat{k}$$

$$S.D. = 2d = \begin{vmatrix} Pr \text{ ojection of } \overrightarrow{AB} \text{ on } \overrightarrow{v} \end{vmatrix}$$

$$= \left| \frac{\overrightarrow{AB}.\overrightarrow{v}}{|\overrightarrow{v}|} \right| = \left| \frac{(a\hat{i} - b\hat{j}).(bc\hat{i} - ac\hat{j} - ab\hat{k})}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \right|$$

$$2d = \frac{abc + bac}{\sqrt{a^2b^2 + b^2c^2 + c^2a^2}}$$

 $d=\frac{abc}{\sqrt{a^2b^2+b^2c^2+c^2a^2}}$ $d^{2} (a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}) = a^{2} b^{2} c^{2}$... $\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ (65) (2). A(1, a, b); B(a, 2, b); C(a, b, 3) $\overrightarrow{AB} = (a-1)\hat{i} + (2-a)\hat{i} + 0\hat{k};$ $\overrightarrow{BC} = 0\hat{i} + (b-2)\hat{j} + (3-b)\hat{k}$ $\overrightarrow{AB} = \lambda \overrightarrow{BC} = \lambda \left(0 \hat{i} + (b-2) \hat{j} + (3-b) \hat{k} \right)$ where $\lambda \neq 0$ Hence $a - 1 = 0 \Longrightarrow a = 1$(1) $2-a = \lambda(b-2)$(2) and $3 - b = 0 \implies b = 3$(3) with a = 1 and b = 3, $\lambda = 1$ Hence a + b = 4

∍y=f(x) $(2,2)_{y=g(x)}$ (66) (2). ਹ Given $\int_{0}^{4} f(x) dx - \int_{0}^{4} g(x) dx = 10$ $(A_1 + A_3 + A_4) - (A_2 + A_3 + A_4) = 10$ $A_1 - A_2 = 10$(1) Again $\int_{2}^{4} g(x) dx - \int_{2}^{4} f(x) dx = 5$ $(A_2 + A_4) - A_4 = 5; A_2 = 5$ $\therefore (1) + (2), A_1 = 15$(2) $y^2 = 4bx(b>0)$ p' M(h,k)p' $y^2 = 4ax(a>0)$ (67) (1). $P(at_1^2, 2at_1)$; $P'(-bt_2^2, 2bt_2)$

$$2at_{1} = 2bt_{2} = k ; at_{1}^{2} - bt_{2}^{2} = 2h$$

$$a\left(\frac{k^{2}}{4a^{2}}\right) - b\left(\frac{k^{2}}{4b^{2}}\right) = 2h$$

$$y^{2}\left(\frac{1}{a} - \frac{1}{b}\right) = 8x \implies y^{2} = \left(\frac{8ab}{b-a}\right)x$$
(68) (1). $P\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right) \quad p_{1} = \frac{\sqrt{2} \ ab}{a^{2} + b^{2}}$

$$p_{2} = \frac{a^{2} - b^{2}}{\sqrt{2} \left(a^{2} + b^{2}\right)} \implies p_{1}p_{2} = result$$

$$T : \frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$$

$$p_{1} = \left|\frac{ab}{\sqrt{b^{2} \cos^{2} \theta + a^{2} \sin^{2} \theta}}\right| \qquad \dots (1)$$

$$N_{1} : \frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^{2} - b^{2}$$

$$p_{2} = \left|\frac{(a^{2} - b^{2}) \sin \theta \cos \theta}{\sqrt{a^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta}}\right| \qquad \dots (2)$$

$$q_{1}p_{2} = \frac{ab(a^{2} - b^{2})}{2\left(\frac{a^{2}}{2} + \frac{b^{2}}{2}\right)} \quad when \theta = \pi/4;$$

$$p_{1}p_{2} = \frac{ab(a^{2} - b^{2})}{a^{2} + b^{2}}$$
(69) (1). $c_{1}^{2} = 1 + \frac{b^{2}}{a^{2}} = 1 + \frac{12}{4} = 4 \implies c_{1} = 2$

$$Now \quad \frac{1}{c_{1}^{2}} + \frac{1}{c_{2}^{2}} = 1; \quad \frac{1}{c_{2}^{2}} = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\Rightarrow \quad c_{2}^{2} = \frac{4}{3} \implies c_{2} = \frac{2}{\sqrt{3}}$$

(70) (3).
$$p \Rightarrow q$$
 is false only when p is true and q is false.
 $p \Rightarrow q$ is false when p is true and q \lor r is false,
and q \lor r is false when both q and r are false.
(71) 2. $\sin x = \sin 2y$ (1)
and $\cos x = \sin y$ (2)
 \therefore (1)² + (2)² \Rightarrow 1 = $\sin^2 y (1 + 4 \cos^2 y)$
 \therefore $\cos^2 y = 4 \sin^2 y \cdot \cos^2 y$
 \Rightarrow $\cos^2 y (4 \sin^2 y - 1) = 0$
 \therefore $y = \frac{\pi}{2}$ or $\frac{\pi}{6}$ or $\frac{5\pi}{6}$
if $y = \frac{\pi}{2}$ then $x = 0$
if $y = \frac{\pi}{2}$ then $x = \frac{\pi}{3}$
 \Rightarrow 2 ordered pairs. i.e.,
 $\left(x = 0, y = \frac{\pi}{2}\right)$ or $\left(x = \frac{\pi}{3}, y = \frac{\pi}{6}\right)$.
(72) 1. $P_n = {n-2}C_3$
 $Q_n = {n}C_3 - [n + n (n - 4)]$
or $Q_n = \frac{n}{C_1} \cdot \frac{n-4}{2}C_2$
 $P_n - Q_n = 6 \Rightarrow n = 10$
(73) 2. $(0,b)$
 $y = x^n$; $\frac{dy}{dx} = n x^{n-1} = na^{n-1}$
slope of normal $= -\frac{1}{na^{n-1}}$
Equation of normal $y - a^n = -\frac{1}{na^{n-1}} (x - a)$
Put $x = 0$ to get y-intercept
 $y = a^n + \frac{1}{na^{n-2}}$; Hence $b = a^n + \frac{1}{na^{n-2}}$
Lim $b = \begin{bmatrix} 0 & \text{if } n < 2 \\ \frac{1}{2} & \text{if } n = 2 \\ \infty & \text{if } n > 2 \end{bmatrix}$

(74) 3. A : exactly one child B: exactly two children C: exactly 3 children

$$P(A) = \frac{1}{4}; P(B) = \frac{1}{2}; P(C) = \frac{1}{4}$$

Couple
$$2 \text{ child}$$
 $\frac{1}{4}$ $4 \text{ children} \rightarrow \text{not possible}$
 $\frac{2 \text{ child}}{3 \text{ child}}$ $\frac{1}{4}$ $\frac{1/2}{2}$ 2 children $\frac{1/4}{1}$ 1 children
 $\frac{1}{4}$ $\frac{1}{4}$

E: couple has exactly 4 grandchildren $P(E) = P(A) \cdot P(E/A) + P(B) \cdot P(E/B)$ $+ P(C) \cdot P(E/C)$

$$= \underbrace{\frac{1}{4} \cdot 0}_{\substack{\text{one child} \\ \text{and have} \\ 4 \text{children}}} + \frac{1}{2} \left[\underbrace{\left(\frac{1}{2}\right)^2}_{2/2} + \underbrace{\left(\frac{1}{4} \cdot \frac{1}{4}\right) \cdot 2}_{(1,3) \text{ or } (3,1)} \right]$$

(not possible)

=

$$+ \frac{1}{4} \left[3 \underbrace{\left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \right)}_{1 \quad 1 \quad 2} \right] \xrightarrow{A \quad E \quad C}_{B}$$

$$=\frac{1}{8}+\frac{1}{16}+\frac{3}{128}=\frac{27}{128}$$

 $\|||$ 2/2 denotes each child having two children; '0' indicated that the child can have a maximum

of 3 children $2 \cdot \frac{1}{4} \cdot \frac{1}{4}$ denotes each child having 1 and 3 or 3 and 1 children

$$=\frac{16}{128}+\frac{8}{128}+\frac{3}{128}=\frac{27}{128}$$

We know that (75) 1.

If
$$y = \frac{x}{h}$$
 then $\sigma_y = \frac{\sigma_x}{|h|}$

Since each observation is divided by 4 The S.D. of new set of observations will be

- ÷.
 - $\frac{4}{4} = 1$