JEE MAIN 2020

FULL TEST-6 SOLUTIONS

STANDARD ANSW ER KEY											
Q	1	2	3	4	5	6	7	8	9	10	11
A	4	1	3	2	4	1	2	3	3	4	2
Q	12	13	14	15	16	17	18	19	20	21	22
A	2	4	1	4	3	3	4	4	4	2	3
Q	23	24	25	26	27	28	29	30	31	32	33
A	4	8	3	1	2	2	2	2	4	3	3
Q	34	35	36	37	38	39	40	41	42	43	44
A	4	3	4	3	4	2	4	3	2	4	3
Q	45	46	47	48	49	50	51	52	53	54	55
A	2	1	6	3	5	5	1	4	4	1	1
Q	56	57	58	59	60	61	62	63	64	65	66
A	1	4	1	2	3	2	2	2	4	2	1
Q	67	68	69	70	71	72	73	74	75		
A	2	1	4	4	3	8	0	1	4		

(1)
(4).

(2) (1). $\quad \mathrm{X}_{2}+\mathrm{Y}_{2} \rightleftharpoons 2 \mathrm{XY}$

$$
\mathrm{t}=0 \quad \frac{1 \mathrm{~mol}}{1 \mathrm{~L}} \quad \frac{2 \mathrm{~mol}}{2 \mathrm{~L}} \quad 0
$$

Ateqm. $\frac{1-\mathrm{x}}{3} \quad \frac{2-\mathrm{x}}{3} \quad \frac{2 \mathrm{x}}{3}$
(4)
(2). $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g})$
$\rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
In Bomb calorimeter
$\Delta \mathrm{E}=-670.48 \mathrm{kCal} \mathrm{mol}^{-1}$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$\Delta \mathrm{H}=-670.48-1 \times 2 \times 10^{-3} \times 298$
(5)
(4). $\mathrm{SO}_{4}{ }^{2-}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{Cl}^{-}$
white ppt
\downarrow dil. HCl
Not dissolves
(1).

The ℓ.p. present on $\mathrm{N}(\mathrm{II})$ is involved in resonance and is the part of aromaticity with two pi bonds in ring so to maintain aromaticity the compound does not have tendency to donate this ℓ.p. while ℓ.p. of N (I) is not involved in resonance and is not the part of aromaticity so compound can easily donate this ℓ.p. Protonation is possible on N(I) not on N (II).
(7) (2).

(8) (3). Given:
(i) $\mathrm{OCl}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{C1}^{-}+\mathrm{H}_{2} \mathrm{O}$
$; \mathrm{E}_{1}{ }^{\circ}=0.94 \mathrm{~V} ; \Delta \mathrm{G}_{1}{ }^{\circ}=-2 \mathrm{FE}_{1}{ }^{\circ}$
(ii) $\mathrm{Cl}^{-} \rightarrow \frac{1}{2} \mathrm{Cl}_{2}+\mathrm{e}^{-} ; \mathrm{E}_{2}{ }^{\circ}=-1.36 \mathrm{~V}$

$$
; \Delta \mathrm{G}_{2}{ }^{\circ}=-1 \mathrm{FE}_{2}{ }^{\circ}
$$

(iii) $\mathrm{OCl}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$;
$; \mathrm{E}_{3}{ }^{\circ}=? ; \Delta \mathrm{G}_{3}{ }^{\circ}=-1 \mathrm{FE}_{3}{ }^{\circ}$
Equation (i) + equation (ii) will gives eq. (iii)
$-2 \mathrm{FE}_{1}{ }^{\circ}-\mathrm{FE}_{2}{ }^{\circ}=-1 \mathrm{FE}_{3}{ }^{\circ}$
$\therefore \quad \mathrm{E}_{3}{ }^{\circ}=2 \mathrm{E}_{1}{ }^{\circ}+\mathrm{E}_{2}{ }^{\circ}$
(9)
(3). $\mathrm{CHF}_{3} \xrightarrow{-\mathrm{H}^{+}} \mathrm{CF}_{3}^{-1}$
$\mathrm{CHCl}_{3} \xrightarrow{-\mathrm{H}^{+}} \mathrm{CCl}_{3}^{-1}$

($\mathrm{P}_{\pi}-\mathrm{d}_{\pi}$) back bonding more stable.
(10) (4). SF_{6} : ' S ' atom is strength protested by six atoms so hydrolysis is not possible.
NF_{3} : Vacant orbital absent.
(11) (2). ZnO turns yellow on heating as Zn^{2+} ions move in interstitial sites and electrons also get entrapped in nearby interstitial sites to maintain electrical neutrality. As extra Zn^{2+} ions are present in interstitial sites thus, it is metal excess defect.
(12)

$\rightarrow \mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(13) (4).

(14) (1). $\mathrm{Ca}(\mathrm{NH})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{NH}_{3}$ (g)

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Mg} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
$\mathrm{C} \quad \mathrm{D}$
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$
D
(15) (4).
(3).

This is known as Liebermann nitroso reaction.
(17) (3). Aldol condensation is not given by compounds which does not have $\alpha-H$ i.e. methanal $\left(\begin{array}{c}\mathrm{O} \\ \mathrm{II} \\ \mathrm{H}-\mathrm{C}-\mathrm{H}\end{array}\right)$.

(18)
(4). $\left[\mathrm{Co}(\mathrm{py})_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}: 2$ G.I.
$\left[\mathrm{Ni}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \quad:$ No G.I.
$\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}\right)(\mathrm{en})_{2}\right]^{2-} \quad: 2$ optical
$\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{-} \quad: 3$ set of 2 G.I.
(total 6 isomer)
$\because \mathrm{NO}_{2}$ can show linkage isomerism
(19) (4). Larger the value of pK_{a}, smaller will be its acidity. Out of the four groups, -COOH , $-\mathrm{NO}_{2}$ and -CN are e^{-}withdrawing which makes benzoic acid more acidic whereas $-\mathrm{OCH}_{3}$ is e^{-}donating which reduces the acidity (makes H^{+}less easily available). pK_{a} value increases if $-\mathrm{OCH}_{3}$ is present at paraposition of benzoic acid.
(20) (4). With trans-but-2-ene, the product of Br_{2} addition is optically inactive due to the formation of symmetric meso-compounds.

(21) 2. Volume of hydrogen $=1.12 \mathrm{~L}$
$\Rightarrow \frac{1.12}{22.4} \times 2 \mathrm{~g}=0.1 \mathrm{~g}$
$0.1 \mathrm{gm} \mathrm{H}_{2}$ is displaced by
$\rightarrow 1.2 \mathrm{gm}$ of metal
$\therefore \quad 1 \mathrm{gm} \mathrm{H}_{2}$ is displaced by
$\rightarrow 12 \mathrm{gm}=$ eq. wt. of metal
(22)
3. $\mathrm{O}_{2}^{-1} \rightarrow 17 \mathrm{e}^{-}$
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{x}}{ }^{2}$
$=\pi 2 \mathrm{p}_{\mathrm{y}}{ }^{2} \pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}{ }^{1} \sigma^{*} 2 \mathrm{p}_{\mathrm{z}}$
[Electron pair in $\mathrm{ABMO}=3$]
(23)
(24)
8. $\mathrm{T}_{\mathrm{b}}{ }^{0}=353.23 \mathrm{~K}, \mathrm{~W}_{\mathrm{B}}=1.8 \mathrm{~g}$,
(29)
(30)
$\mathrm{W}_{\mathrm{A}}=90 \mathrm{~g}, \mathrm{~T}_{\mathrm{b}}=354.11 \mathrm{~K}$,
$\mathrm{K}_{\mathrm{b}}=2.53 \mathrm{~kg} \mathrm{~mol}^{-1}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{\mathrm{o}}=354.11-353.23=0.88 \mathrm{~K}$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{B}} & =\frac{\mathrm{W}_{\mathrm{B}} \times \mathrm{K}_{\mathrm{b}} \times 1000}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{W}_{\mathrm{A}}}=\frac{1.8 \times 2.53 \times 1000}{0.88 \times 90} \\
& =57.5 \approx 58 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(2). Maximum heat will be generated when the distance travelled by the block with respect to the belt is maximum this will be the case when the block attains zero velocity after covering a distance ℓ and then come ϕ back. $\mathrm{a}=\mu \mathrm{g}$
$\mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{a} ; 0=\mathrm{v}_{0}^{2}-2 \times(\mu \mathrm{g}) \ell$
$\mathrm{v}_{0}=\sqrt{2 \mu \mathrm{~g} \ell}$
(28) (2). Spring force does not change instantaneously. Thus for $\mathrm{m}_{1} ; \mathrm{a}_{1}=\mathrm{a}_{0}$
For m_{2} : $\mathrm{F}_{\mathrm{S}_{\mathrm{p}}}=\mathrm{m}_{2} \mathrm{a}_{2}$
Instantaneously after F_{2} is withdrawn
Initially $\mathrm{F}_{\mathrm{S}_{\mathrm{p}}}-\mathrm{F}_{2}=\mathrm{m}_{2} \mathrm{a}_{0}$
$\mathrm{F}_{\mathrm{S}_{\mathrm{p}}}=\mathrm{F}_{2}+\mathrm{m}_{2} \mathrm{a}_{0}$
From (i) and (ii) $\mathrm{a}_{2}=\frac{\mathrm{F}_{2}}{\mathrm{~m}_{2}}+\mathrm{a}_{0}$
3. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-} \rightarrow \mathrm{Cr}^{+3}+\mathrm{I}_{2}$
(1). From figure:

For time interval $\mathrm{t}=0$ to $\mathrm{t}=1 \mathrm{sec}$
Slope of x-t graph is negative and increasing, so velocity increases in negative direction.
For $\mathrm{t}=1$ to 2 sec .
The slope is + ve and decreasing, so velocity is decreasing in + ve direction and become zero at $\mathrm{t}=2$.

(2). For equilibrium $\mathrm{F}=0$ and from $\mathrm{F}-\mathrm{x}$ graph it is clear at $\mathrm{x}=4 \mathrm{~F}=0$.
From V-x graph,
It is clear that $F=\frac{d V}{d x}=0$ at $x=z$
(2). $\mathrm{F}_{\text {thrust }}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{m}=5000 \mathrm{~kg}, \mathrm{a}=20 \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow \mathrm{F}_{\text {thrust }}=150000 \mathrm{~N}$
$\mathrm{F}_{\text {thrust }}=\mathrm{U}_{\text {rel }} \times \frac{\mathrm{dm}}{\mathrm{dt}}$
$\Rightarrow \quad(-800) \times \frac{\mathrm{dm}}{\mathrm{dt}}=150000$

mg
$\Rightarrow \frac{\mathrm{dm}}{\mathrm{dt}} \approx-187.5 \mathrm{~kg} / \mathrm{s}$
(31)
(4).

Applying Newton's II law on
block; $\mathrm{mg}-\mathrm{T}=2 \mathrm{ma}$
considering force and torque on the ring;
$\mathrm{T} \times \mathrm{r}-\mathrm{f} \times \mathrm{r}=\mathrm{mr} \alpha$
$\mathrm{a}=\mathrm{r} \alpha$
$\mathrm{T}+\mathrm{f}=\mathrm{ma}$
Solving (ii), (iii) and (iv); $\mathrm{f}=0 ; \mathrm{T}=\mathrm{ma}$
$\therefore \quad$ From (i), $a=g / 3$
(32)
(3). $x=a \cos \omega t ; v=-a \omega \sin \omega t$

$$
<\mathrm{v}>=\frac{\int_{0}^{\mathrm{T} / 6}(-\mathrm{a} \omega \sin \omega \mathrm{t})}{\int_{0}^{\mathrm{T} / 6} \mathrm{dt}}=\frac{3 \mathrm{a}}{\mathrm{~T}}
$$

(33)

$$
y=A_{0} \sin k x \sin \left(\omega t+\frac{\pi}{2}+\frac{\pi}{3}\right)
$$

$$
=\mathrm{A}_{0} \sin \left(\frac{2 \pi}{2 \mathrm{~L}}\right) \times\left(\frac{\mathrm{L}}{2}\right) \sin \left(\omega \mathrm{t}+\frac{5 \pi}{6}\right)
$$

$$
=\mathrm{A}_{0} \sin \left(\omega \mathrm{t}+\frac{5 \pi}{6}\right)
$$

(34)
(3).

$$
3 \frac{\lambda}{2}=3 \mathrm{~L} \Rightarrow \lambda=2 \mathrm{~L}
$$

(4). $f_{1}=f\left[\frac{v-v_{0} \cos \theta}{v}\right]$..

$\mathrm{f}_{2}=\mathrm{f}\left[\frac{\mathrm{v}-\mathrm{v}_{0}}{\mathrm{v}}\right]$
$\therefore \frac{f_{1}}{f_{2}}=\frac{v-v_{0} \cos \theta}{v-v_{0}}>1$

(35) (3). For ring just slides on to the steel rod the diameter of rod and ring should be equal to each other and suppose due to $\Delta \theta$ increment
in temperature the diameter of both are equal

$$
\text { then } 4\left(1+\alpha_{\mathrm{s}} \Delta \theta\right)=3.992\left(1+\alpha_{\text {Brass }} \Delta \theta\right)
$$

$$
4+4 \times 11 \times 10^{-6} \times \Delta \theta
$$

$$
=3.992+3.992 \times 20 \times 10^{-6} \times \Delta \theta
$$

$4+44 \times 10^{-6} \Delta \theta$

$$
=3.992+79.84 \times 10^{-6} \times \Delta \theta
$$

$0.008=35.84 \times 10^{-6} \Delta \theta$
$\frac{8 \times 10^{3}}{35.84}=\Delta \theta \quad ; \quad \Delta \theta=\frac{8000}{35.84}=283$
So if temperature increased by $223^{\circ} \mathrm{C}$ then ring will start to slide and this temperature will equal to
$\theta=30^{\circ}+\Delta \theta=30+253=283^{\circ} \mathrm{C}$
$\theta=283^{\circ} \mathrm{C} \approx 280^{\circ} \mathrm{C}$
(36) (4).

(W)
(W)

(X)

(37)
(3).

$\frac{\mathrm{q}_{2}}{7}=\frac{56.25+\mathrm{q}_{1}}{3}$
$\frac{\mathrm{q}_{2}}{7}+\frac{56.25+\mathrm{q}_{1}+\mathrm{q}_{2}}{5}=30$
$\therefore \quad \mathrm{q}_{2}=70 ; \mathrm{q}_{1}=-26.25 \quad \therefore \mathrm{q}=43.75$
(38)
(4). $(1680+r) I=20$
$(2930+r) I=30$
$2 \times 2930+2 r=3 \times 1680+3 r ; r=820$
(39) (2). Introducing two equal and opposite current I_{1} and also I_{2} between $\mathrm{A} \& \mathrm{C}$.

Force on ABCA closed loop zero
Force on ADCA closed loop zero
Force on extra $\mathrm{I}_{1} \& \mathrm{I}_{2}$

$$
\mathrm{F}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) / \mathrm{B}=\mathrm{I} / \mathrm{B}^{2}
$$

(40)
(41)
(42)
(3). $P_{a v}=\frac{v^{2}}{2 z_{1}^{2}} R=\frac{v^{2} R}{2 z_{2}^{2}}$
(2). $I_{1}=I_{0}=\frac{P}{4 \pi d^{2}} ; \quad I_{2}=\frac{P}{4 \pi(3 d)^{2}}$

$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\mathrm{P}}{4 \pi \mathrm{~d}^{2}}\left[1+\frac{1}{9}\right]=\frac{10}{9} \mathrm{I}_{0}$
(43) (4). $\mathrm{D}_{1} \Rightarrow$ Reverse biased
$\mathrm{D}_{2} \Rightarrow$ Forward biased
$\mathrm{i}=\frac{12}{4+2}=2$
(44) (3). We know that $h \nu=$ K.E. $+\phi$
$\therefore \quad \mathrm{h} v_{1}=\mathrm{K}_{1}+\phi$
(4). $\phi=\int \frac{\mu_{0} i}{2 \pi x} x$ ad $x=M_{x} i$
$\mathrm{M}=\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \frac{(\mathrm{~b}+\mathrm{c})}{\mathrm{c}}$

$$
\begin{align*}
& z_{1}= \pm z_{2} \Rightarrow \omega^{2} L^{2}+R^{2}=\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}+\mathrm{R}^{2} \tag{46}\\
& -\frac{2 \mathrm{~L}}{\mathrm{C}}+\frac{1}{\omega^{2} \mathrm{C}^{2}}=0 \Rightarrow \mathrm{C}=\frac{1}{2 \omega^{2} \mathrm{~L}}=25 \mu \mathrm{~F}
\end{align*}
$$

and $h \nu_{2}=K_{2}+\phi$
(49)

Dividing $\frac{v_{2}}{v_{1}}=\frac{\mathrm{K}_{2}+\phi}{\mathrm{K}_{1}+\phi} \Rightarrow \frac{2 \mathrm{v}_{1}}{\mathrm{v}_{1}}=\frac{\mathrm{K}_{2}+\phi}{\mathrm{K}_{1}+\phi}$
$\Rightarrow 2\left(\mathrm{~K}_{1}+\phi\right)=\mathrm{K}_{2}+\phi \Rightarrow \mathrm{K}_{2}=\phi+2 \mathrm{~K}_{1}$
Hence K.E. will become slightly more than double.
(2). $\because T_{a}=\frac{1}{\lambda}$
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{T}_{\mathrm{a}}}=\mathrm{N}_{0} \mathrm{e}^{-\frac{1}{\mathrm{~T}_{\mathrm{a}}} \times \mathrm{T}_{\mathrm{a}}}=\mathrm{N}_{0} \mathrm{e}^{-1}=\frac{\mathrm{N}_{0}}{e}$
$\mathrm{N}=\frac{\mathrm{N}_{0}}{2.718}=0.37 \mathrm{~N}_{0}$
Then number of decayed nuclei

$$
\begin{aligned}
& \mathrm{N}^{\prime}=\mathrm{N}_{0}-\mathrm{N} \quad \Rightarrow \mathrm{~N}^{\prime}=\mathrm{N}_{0}-0.37 \mathrm{~N}_{0} \\
& \mathrm{~N}^{\prime}=0.63 \mathrm{~N}_{0} \Rightarrow 63 \% \text { of } \mathrm{N}_{0}
\end{aligned}
$$

or About $2 / 3$ of substance disintegrate.

1. Since there is no external horizontal force on whole system C.M. of whole system need move,
$\Delta \mathrm{r}_{\mathrm{CM}}=\frac{\mathrm{m}_{1} \Delta \mathrm{r}_{1}+\mathrm{m}_{2} \Delta \mathrm{r}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$

$\mathrm{O}=\frac{\mathrm{M}(\mathrm{x}-2)+3 \mathrm{Mx}}{4 \mathrm{M}}$
$\mathrm{Mx}-2 \mathrm{M}+3 \mathrm{Mx}=0 ; 4 \mathrm{x}=2 ; \mathrm{x}=0.5 \mathrm{~m}$
2. $\mathrm{w}_{\mathrm{S}}-\mathrm{w}_{\mathrm{E}}=\frac{2 \pi}{\mathrm{~T}} ; \quad \mathrm{w}_{\mathrm{S}}-\frac{2 \pi}{24}=\frac{2 \pi}{8}$
$\mathrm{w}_{\mathrm{S}}=2 \pi\left[\frac{1}{24}+\frac{1}{8}\right] ; \mathrm{w}_{\mathrm{S}}=2 \pi\left[\frac{1+3}{24}\right]=\frac{2 \pi}{6}$
$\mathrm{T}_{\text {satellite }}=6 \mathrm{hr}$
3. Let volume of block $=\mathrm{V}_{1}$

Volume of concrete $=V_{2}$
$\therefore \quad$ Displaced volume of water $=\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
Weight of the combination $=$ Buoyant force
$\therefore \quad 0.5 \times \mathrm{V}_{1} \mathrm{~g}+0.25 \times \mathrm{V}_{2} \mathrm{~g}=1 \times\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \mathrm{g}$
$\therefore \quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{3}{1} \quad \therefore \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{2}}=\frac{0.5 \times \mathrm{V}_{1}}{0.25 \times \mathrm{V}_{2}}=3 / 5$
5. $\mathrm{F}-\mathrm{T}=3 \mathrm{a} ; \mathrm{T}=2 \mathrm{a}$
$\mathrm{T}=2.5 \times 10^{9} \times 4 \times 10^{-8} ; \mathrm{T}=100 \mathrm{~N}$
$\mathrm{T}=2 \mathrm{a} ; 100=2 \mathrm{a} ; \mathrm{a}=50 \mathrm{~N}$
$\mathrm{F}=5 \times 50 ; \mathrm{F}=250 \mathrm{~N}$
(50)
5. $\mathrm{W}=\frac{1}{2} \times 3 \mathrm{v}_{0} \times \mathrm{P}_{0}+3 \mathrm{v}_{0} \times \mathrm{P}_{0}$
$\mathrm{W}=\frac{3}{2} \mathrm{P}_{0} \mathrm{v}_{0}+3 \mathrm{v}_{0} \mathrm{P}_{0} ; \mathrm{W}=\frac{\mathrm{a}}{2} \mathrm{P}_{0} \mathrm{v}_{0}$
$\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=\mathrm{n}\left(\frac{3 \mathrm{R}}{2}\right)\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$
$\Delta \mathrm{U}=\frac{3}{2} \mathrm{nR}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=\frac{3}{2}\left[\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}\right]$
$\Delta \mathrm{U}=\frac{3}{2}\left[4 \mathrm{P}_{0} \mathrm{~V}_{0}-2 \mathrm{P}_{0} \mathrm{~V}_{0}\right]=3 \mathrm{P}_{0} \mathrm{~V}_{0}$
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}=\frac{9}{2} \mathrm{P}_{0} \mathrm{~V}_{0}+3 \mathrm{P}_{0} \mathrm{~V}_{0}=\frac{15}{2} \mathrm{P}_{0} \mathrm{~V}_{0}$

$\mathrm{P}_{0}=\frac{10^{6}}{2}, \mathrm{~V}_{0}=0.1$
$\Delta \mathrm{Q}=\frac{15}{2} \times \frac{10^{6}}{2} \times 0.1=375000 \mathrm{~J}$
$\Delta \mathrm{Q}=375 \mathrm{~kJ}$
(51)
(1). $\mathrm{BD}=\mathrm{x} \tan \mathrm{C}$ in $\triangle \mathrm{PDB}$
and $\mathrm{DC}=\mathrm{x} \tan \mathrm{B}$ for $\triangle \mathrm{PDC}$
$\therefore \mathrm{BD}+\mathrm{DC}=\mathrm{a}=\mathrm{x}(\tan \mathrm{B}+\tan \mathrm{C})$

$$
\frac{\mathrm{a}}{\mathrm{x}}=\tan B+\tan C \Rightarrow \text { result }
$$

(52) (4). Clearly, equation of required circle, is
$(x+1)^{2}+(y-1)^{2}+\lambda(x+y)=0$
$\Rightarrow x^{2}+y^{2}+(\lambda+2) x+(\lambda-2) y+2=0$
As circle (1) intersects the circle
$x^{2}+y^{2}+6 x-4 y+18=0$ orthogonally,
so using orthogonality condition, we get
$2\left(\left(\frac{\lambda+2}{2}\right) 3-2\left(\frac{\lambda-2}{2}\right)\right)=18+2$

$\Rightarrow(3 \lambda+6)-(2 \lambda-4)=20 \Rightarrow \lambda=10$
So, putting $\lambda=10$ in equation, we get
$x^{2}+y^{2}+12 x+8 y+2=0$.
Clearly, radius $=\sqrt{(6)^{2}+(4)^{2}-2}$
$=\sqrt{36+16-2}=\sqrt{50}=5 \sqrt{2}$
(4).
(1) $f(x)=x^{4}+2 x^{3}-x^{2}+1 \rightarrow$ A polynomial of degree even will always be into say
$\mathrm{f}(\mathrm{x})=\mathrm{a}_{0} \mathrm{x}^{2 \mathrm{n}}+\mathrm{a}_{1} \mathrm{x}^{2 \mathrm{n}-1}+\mathrm{a}_{2} \mathrm{x}^{2 \mathrm{n}-2_{+}} \ldots .+\mathrm{a}_{2 \mathrm{n}}$
$\operatorname{Limit}_{x \rightarrow \pm \infty} f(x)$
$=\operatorname{Limit}_{x \rightarrow \pm \infty}\left[x^{2 n}\left(a_{0}+\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}+\ldots .+\frac{a_{2 n}}{x^{2 n}}\right)\right.$
$=\left[\begin{array}{cc}\infty & \text { if } \mathrm{a}_{0}>0 \\ -\infty & \text { if } \mathrm{a}_{0}<0\end{array}\right.$
Hence it will never approach $\infty /-\infty$
(2) $f(x)=x^{3}+x+1 \Rightarrow f^{\prime}(x)=3 x^{2}+1$
\Rightarrow Injective as well as surjective
(3) $f(x)=\sqrt{1+x^{2}}$ - neither injective nor surjective (minimum value $=1$)
(4) $f(x)=x^{3}+2 x^{2}-x+1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+4 \mathrm{x}-1 \Rightarrow \mathrm{D}>0$
Hence $f(x)$ is surjective but not injective.
(1). $k(x)=\sqrt{1+\operatorname{sgn} x}= \begin{cases}0 ; & x<0 \\ 1 ; & x=0 \\ 2 ; & x>0\end{cases}$

So, $\mathrm{k}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
(1). $\operatorname{Limit}_{x \rightarrow \infty} \sqrt{x+1}-\sqrt{x}=0 \Rightarrow \cot ^{-1}(0)=\pi / 2$
$\underset{x \rightarrow \infty}{\operatorname{Limit}}\left(\frac{2 x+1}{x-1}\right)^{x} \rightarrow \infty \Rightarrow \sec ^{-1}(\infty)=\pi / 2$
$\therefore \quad l=1$
(56) (1). $u=\int_{0}^{\pi / 2} \cos \left(\frac{2 \pi}{3} \sin ^{2} x\right) d x$
$\mathrm{u}=\int_{0}^{\pi / 2} \cos \left(\frac{2 \pi}{3} \cos ^{2} \mathrm{x}\right) \mathrm{dx}$ (using King)
$2 u=\int_{0}^{\pi / 2} \cos \left(\frac{2 \pi}{3} \sin ^{2} x\right)+\cos \left(\frac{2 \pi}{3} \cdot \cos ^{2} x\right) d x$
On adding

$$
2 u=\int_{0}^{\pi / 2} 2 \cos \frac{\pi}{3} \cdot \cos \left(\frac{\pi}{3} \cos 2 x\right) d x
$$

$$
(\text { using } \cos C+\cos D)
$$

$$
=\frac{1}{2} \int_{0}^{\pi} \cos \left(\frac{\pi}{3} \cos t\right) d t
$$

$$
[\text { Put } 2 \mathrm{x}=\mathrm{t}]
$$

$$
=\int_{0}^{\pi / 2} \cos \left(\frac{\pi}{3} \cos t\right) d t=\int_{0}^{\pi / 2} \cos \left(\frac{\pi}{3} \sin t\right) d t
$$

(57)
(4). We have $f^{\prime}(x)=\sqrt{x} \cos x, x \in\left(0, \frac{5 \pi}{2}\right)$

sign of $\mathrm{f}^{\prime}(\mathrm{x})$
$\therefore \quad \mathrm{f}(\mathrm{x})$ has local maximum at $\pi / 2$ and local minimum at $3 \pi / 2$
(58)
(1). $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=0 ;|\vec{a}|=|\vec{b}|=1 ;|\vec{c}|=2$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{d}}=-\overrightarrow{\mathrm{b}} \Rightarrow(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{d}})^{2}=\overrightarrow{\mathrm{b}}^{2}=1$
or $\quad|\vec{a}|^{2}|\vec{d}|^{2}-(\vec{a} \cdot \vec{d})^{2}=1$
or $(\vec{a} \times \overrightarrow{\mathrm{c}})^{2}-0=1 \Rightarrow|\overrightarrow{\mathrm{a}}|^{2}|\overrightarrow{\mathrm{c}}|^{2}-(\vec{a} \cdot \overrightarrow{\mathrm{c}})^{2}=1$
$\left.\Rightarrow 4-2 \cos ^{2} \theta=1 \Rightarrow \cos ^{2} \theta=\frac{3}{4} ; \theta=\pi / 6\right]$
Alternative: $(\vec{a} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{c}=-\vec{b}$
$(\lambda \vec{a}-\vec{c})^{2}=1 \quad$ or $\quad \lambda^{2} \vec{a}^{2}+\vec{c}^{2}-2 \lambda \vec{a} \cdot \vec{c}=1$
(where $\lambda=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}$)
$\Rightarrow \lambda^{2}+4-2 \lambda^{2}=1 \quad$ or $\quad \lambda^{2}=3$
$\overrightarrow{\mathrm{a}}^{2} \overrightarrow{\mathrm{c}}^{2} \cos ^{2} \theta=3 ; \cos ^{2} \theta=3 / 4 ; \quad \theta=\pi / 6$
(59) (2). The equation of any plane through the intersection of P_{1} and P_{2} is
$\mathrm{P}_{1}+\lambda \mathrm{P}_{2}=0$
$\Rightarrow(2 x-y+z-2)+\lambda(x+2 y-z-3)=0$
Also it passes through $(3,2,1)$, then $\lambda=-1$
$\therefore \quad$ Equation of plane is
$x-3 y+2 z+1=0$
(3). $\mathrm{P}(\mathrm{F} / \mathrm{F})=0.9 ; \mathrm{P}(\mathrm{C} / \mathrm{F})=0.1 ; \mathrm{P}(\mathrm{C} / \mathrm{C})=0.8$
$\mathrm{P}(\mathrm{F} / \mathrm{C})=0.2$
$\mathrm{P}(\mathrm{F})=\frac{3}{10} ; \mathrm{P}(\mathrm{C})=\frac{7}{10}$
A: Wine tasted was French
$\mathrm{B}_{1}:$ It is a Californian wine ; $\mathrm{P}\left(\mathrm{B}_{1}\right)=\frac{7}{10}$

B_{2} : It is a French wine; $\mathrm{P}\left(\mathrm{B}_{2}\right)=\frac{3}{10}$

$$
\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)=0.2 \quad ; \quad \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)=0.9
$$

$$
\mathrm{P}\left(\mathrm{~B}_{1} / \mathrm{A}\right)=\frac{0.7 \times 0.2}{0.7 \times 0.2+0.3 \times 0.9}
$$

$$
=\frac{0.14}{0.14+0.27}=\frac{14}{41}
$$

(2).

$y=-\sqrt{-x} \Rightarrow y^{2}=-x$
where $x \& y$ both $(-)$ ve
$x=-\sqrt{-y} \Rightarrow x^{2}=-y$
where $x \& y$ both $(-)$ ve
Hence $\mathrm{A}=\frac{16 \mathrm{ab}}{3}$, where $\mathrm{a}=\mathrm{b}=\frac{1}{4}$
$\therefore \quad \mathrm{A}=1 / 3$
(62) (2). Let $\mathrm{P}\left(2 \mathrm{t}_{1}, \mathrm{t}_{1}{ }^{2}\right) ; \mathrm{Q}\left(2 \mathrm{t}_{2}, \mathrm{t}_{2}{ }^{2}\right)$ Clearly, $t_{1} t_{2}=-4$
Also, $\mathrm{h}=\frac{2 \mathrm{t}_{1}+2 \mathrm{t}_{2}}{3}$
$\Rightarrow \frac{3 \mathrm{~h}}{2}=\mathrm{t}_{1}+\mathrm{t}_{2}$

and $\mathrm{k}=\frac{1+\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}}{3}$
$\Rightarrow \quad 3 \mathrm{k}=1+\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}$
$\therefore \quad$ On eliminating we get t_{1}, t_{2} from (1), (2) \& (3)
, $\frac{9 h^{2}}{4}=3 k-9 \Rightarrow x^{2}=\frac{4}{3}(y-3)$
(63)
(2).

For the ellipse, $a^{2}=25, b^{2}=9$
$\therefore \quad 9=25\left(1-\mathrm{e}^{2}\right) \Rightarrow \mathrm{e}^{2}=\frac{16}{25} \Rightarrow \mathrm{e}=4 / 5$
$\therefore \quad$ One of the foci is $(\mathrm{ae}, 0)$ i.e. $(4,0)$
\therefore For the hyperbola
$a^{\prime} e^{\prime}=4 \Rightarrow 2 a^{\prime}=4 \Rightarrow a^{\prime}=2$
and $\mathrm{b}^{\prime 2}=4\left(\mathrm{e}^{\prime 2}-1\right)=4 \times 3=12$
$\therefore \quad$ Equation of the hyperbola is $\frac{\mathrm{x}^{2}}{4}-\frac{\mathrm{y}^{2}}{12}=1$
(64) (4). $z=(3 p-7 q)+i(3 q+7 p)$ for purely imaginary $3 p=7 q \Rightarrow p=7$
or $\mathrm{q}=3$ (for least value)
$|z|=|3+7 i||p+i q|$
$\Rightarrow|\mathrm{z}|^{2}=58\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)=58\left[7^{2}+9\right]=58^{2}$
(65) (2). On the set N of natural number, $R=\{(x, y)$: $\mathrm{x}, \mathrm{y} \in \mathrm{N}$ and $2 \mathrm{x}+\mathrm{y}=41\}$
Here $(1,1) \notin R$ as $2 \cdot 1+1=3 \neq 41$. So, R is not reflexive. $(1,39) \in R$ but $(39,1) \notin R$. So, R is not symmetric. $(20,1),(1,39) \in R$. $\operatorname{But}(20,39) \notin R$. So, R is not transitive]
(67)
(66)
(1). $\sigma_{x}^{2}=\left\{\frac{f_{1} x_{1}^{2}+f_{2} x_{2}^{2}}{f_{1}+f_{2}}-\left(\frac{f_{1} x_{1}+f_{2} x_{2}}{f_{1}+f_{2}}\right)^{2}\right\}$
$\sigma_{x}^{2}=\left(\frac{1}{f_{1}+f_{2}}\right)\left\{f_{1} x_{1}^{2}+f_{2} x_{2}^{2}-\frac{\left(f_{1} x_{1}+f_{2} x_{2}\right)^{2}}{f_{1}+f_{2}}\right\}$
$\sigma_{x}^{2}=\frac{1}{\left(f_{1}+f_{2}\right)^{2}}\binom{f_{1}^{2} x_{1}^{2}+f_{1} f_{2} x_{1}^{2}+f_{2} f_{1} x_{2}^{2}+f_{2}^{2} x^{2}}{-f_{1}^{2} x_{1}^{2}-f_{2}^{2} x_{2}^{2}-2 f_{1} f_{2} x_{1} x_{2}}$
$\therefore \quad \sigma_{\mathrm{x}}^{2}=\frac{\mathrm{f}_{1} \mathrm{f}_{2}}{\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}$
(2). $\sim p$: Ram does not work hard

Use ' \rightarrow ' symbol for then
$(\sim p \rightarrow q)$ means, if Ram does not work hard, then he gets good grade.
(68)
(1). Put $\ln x=t$
$\frac{d x}{x}=d t ; \quad \int_{1}^{2010}\left(1+\frac{1-t}{t(t-\ell n t)}\right) d t$
$2009+\int_{1}^{2010} \frac{\frac{1}{\mathrm{t}}-1}{\mathrm{t}-\ell \mathrm{nt}} \mathrm{dt}$
$2009-[\ell \mathrm{n}(\mathrm{t}-\ell \mathrm{nt})]_{1}^{2010}$
$2009-[\ln (2010-\ln 2010)]$
(69)
)
(4). $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$,

Now, $\left[\begin{array}{lll}\vec{a} & \vec{b} & c\end{array}\right]^{2}=\left|\begin{array}{ccc}1 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1\end{array}\right|$
$=1\left(1-\frac{1}{4}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{4}-\frac{1}{2}\right)=\frac{3}{4}-\frac{1}{8}-\frac{1}{8}=\frac{1}{2}$
$\therefore \quad\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]= \pm \frac{1}{\sqrt{2}}$
Now, $\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\mathrm{p}+\frac{\mathrm{q}}{2}+\frac{\mathrm{r}}{2}$

$$
\begin{equation*}
\pm \frac{1}{\sqrt{2}}=\mathrm{p}+\frac{\mathrm{q}}{2}+\frac{\mathrm{r}}{2} ; 2 \mathrm{p}+\mathrm{q}+\mathrm{r}= \pm \sqrt{2} \tag{1}
\end{equation*}
$$

$\overrightarrow{\mathrm{b}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\frac{\mathrm{p}}{2}+\mathrm{q}+\frac{\mathrm{r}}{2} \Rightarrow \mathrm{p}+2 \mathrm{q}+\mathrm{r}=0$.
$\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\frac{\mathrm{p}}{2}+\frac{\mathrm{q}}{2}+\mathrm{r} ; \mathrm{p}+\mathrm{q}+2 \mathrm{r}= \pm \sqrt{2}$
Now, $\quad \mathrm{p}=\mathrm{r}=-\mathrm{q}$

$$
\begin{align*}
& \mathrm{p}=\mathrm{r}= \pm \frac{1}{\sqrt{2}}, \mathrm{q}=\mp \frac{1}{\sqrt{2}} \tag{3}\\
& \frac{\mathrm{p}^{2}+2 \mathrm{q}^{2}+\mathrm{r}^{2}}{\mathrm{q}^{2}}=4
\end{align*}
$$

(71) 3. $(\mathrm{x}-\mathrm{c})^{2}=1 \Rightarrow \mathrm{x}-\mathrm{c}= \pm 1$
$\Rightarrow \quad \mathrm{x}=\mathrm{c}+1, \mathrm{c}-1$
$\therefore \quad \mathrm{c}-1>-2$ and $\mathrm{c}+1<4 \Rightarrow-1<\mathrm{c}<3$
$\therefore \quad$ Number of integral values of c are 3 i.e., $\mathrm{c}=0,1,2$
8. $\quad P_{n}={ }^{n-2} C_{3} ; \quad P_{n+1}={ }^{n-1} C_{3}$

Hence ${ }^{n-1} C_{3}-{ }^{n-2} C_{3}=15$
${ }^{n-2} C_{3}+{ }^{n-2} C_{2}-{ }^{n-2} C_{3}=15$
or ${ }^{n-2} C_{2}=15 \Rightarrow n=8$
(73)
0. $2 \tan ^{-1}(1 / 2)+\tan ^{-1}(4 / 3)$
$=\tan ^{-1} \frac{2 \cdot \frac{1}{2}}{1-\frac{1}{4}}+\tan ^{-1} \frac{4}{3}=2 \tan ^{-1} \frac{4}{3}>\frac{\pi}{2}$
but $\operatorname{cosec}^{-1} \mathrm{x} \in\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$
\Rightarrow no solution

1. $\mathrm{A}+\mathrm{A}^{\mathrm{T}}=\mathbf{O} \Rightarrow\left[\begin{array}{cc}2 \sin \theta & 0 \\ 0 & -2 \sin \theta\end{array}\right]=\mathbf{O}$
$\Rightarrow \sin \theta=0 \Rightarrow \theta=n \pi, n \in I$
$\therefore \quad \theta=\pi \in(0,6)$
2. We have, $\frac{d y}{d x}+\left(\frac{-1}{x}\right) y=x\left(x e^{x}+e^{x}-1\right)$
[Linear differential equation]
$\therefore \quad$ I.F. $=\mathrm{e}^{-\int \frac{\mathrm{dx}}{\mathrm{x}}}=\mathrm{e}^{-\ln \mathrm{x}}=\frac{1}{\mathrm{x}}$
Now, general solution is

$$
\begin{aligned}
& y\left(\frac{1}{x}\right)=\int\left(e^{x}(x+1)-1\right) d x+C \\
\Rightarrow & \frac{y}{x}=x e^{x}-x+C \\
& \text { As, } y(x=1)=e-1 \Rightarrow \frac{e-1}{1}=e-1+C
\end{aligned}
$$

$\Rightarrow \quad \mathrm{C}=0 \quad \therefore \mathrm{x}+\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{xe}^{\mathrm{x}}$
Now, $2+\frac{y(2)}{2}=2 e^{2} \Rightarrow y(2)=4 e^{2}-4$

