JEE MAIN 2020

FULL TEST-8 SOLUTIONS

STANDARD ANSW ER KEY											
Q	1	2	3	4	5	6	7	8	9	10	11
A	2	3	2	4	1	2	1	1	3	2	4
Q	12	13	14	15	16	17	18	19	20	21	22
A	1	1	3	4	1	2	1	3	2	9	8
Q	23	24	25	26	27	28	29	30	31	32	33
A	5	1	5	3	4	3	1	3	1	2	1
Q	34	35	36	37	38	39	40	41	42	43	44
A	2	4	2	3	3	2	4	1	1	2	1
Q	45	46	47	48	49	50	51	52	53	54	55
A	2	6	5	2	5	3	1	4	3	1	2
Q	56	57	58	59	60	61	62	63	64	65	66
A	3	4	2	3	4	3	1	4	2	3	4
Q	67	68	69	70	71	72	73	74	75		
A	3	1	3	1	8	2	7	7	6		

(1) (2). Let atomic weight of metal $=x$ Oxide: I

$$
\begin{aligned}
& \text { M O } \\
& \frac{50}{x}: \frac{50}{16}
\end{aligned}
$$

Formula $=$ MO, Hence $x=16$
In oxide II : $\quad \mathrm{M} \quad \mathrm{O}$
Formula of II oxide $\mathrm{M}_{2} \mathrm{O}_{3} \quad \frac{40}{16} \quad \frac{60}{16}$
$2: 3$
(2) (3).

Strong electron releasing group
$\left(-\mathrm{OCH}_{3}\right)$ generally win over the deactivating group. Thus, o and p-products will be formed. Due to steric hindrance ortho product will be formed in lesser amount than para product.
(3) (2).

Along the period $\mathrm{Z}_{\mathrm{eff}} \uparrow, \mathrm{IP} \uparrow$, but after removing $2 \mathrm{e}^{-}$from Mn , it has half filled of
configuration, so having maximum ionisation enthalpy among above 4 elements.
(4) (4). $\mathrm{Li}^{+} \mathrm{Na}^{+} \mathrm{K}^{+} \mathrm{Rb}^{+} \mathrm{Cs}^{+}$
$\xrightarrow[\mathrm{r}^{+}(\uparrow) \text { Hydrated radio }(\downarrow)]{ }$
ionic conductivity (\uparrow)
(5) (1). Halide of $13^{\text {th }}$ group act as Lewis acid
$\mathrm{BCl}_{3}>\mathrm{AlCl}_{3}>\mathrm{GaCl}_{3}>\mathrm{InCl}_{3}$

- Lewis acidic strength
(6)
(2).

(7) (1). Electron withdrawing power increases the reactivity of the molecule towards hydrolysis reaction.
Electron withdrawing power will be following
$-\mathrm{NO}_{2}>-\mathrm{CHO}>-\mathrm{C}_{6} \mathrm{H}_{5}>-\mathrm{CH}_{3}$.
(8)

(9)
(3). (1)

(3)

(4)

Induced $+\mathrm{M} \quad+\mathrm{M}$
$+\mathrm{H}$
(10) (2). $\mathrm{In}_{\mathrm{CCl}}^{4}$, I_{2} in molecular from, hence colour in violet.
In KI, form complex $\mathrm{I}_{3}{ }^{-}$
$\mathrm{I}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-}$(brown in colour)
In ether also I_{2} in the polymeric form.
In starch solution I_{2} form deep blue complex.
(11) (4).
(12) (1). $\mathrm{T}_{\mathrm{f}}^{0}=5.45^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{f}}=3.55^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{f}}=5.45^{\circ} \mathrm{C} ; \Delta \mathrm{T}_{\mathrm{f}}=5.45-3.55=1.90$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m} ; \quad 1.90=0.374 \times \mathrm{m}$
$\mathrm{m}=\frac{1.90}{0.374}=\frac{5.08 \mathrm{Kkg}}{\mathrm{mol}}$
(1). $\mathrm{XeF}_{6} \quad \mathrm{Hyb} .=\mathrm{sp}^{3} \mathrm{~d}^{3}$

Shape distorted octahedral
(2). $\mathrm{Nb}_{41} \& \mathrm{Ta}_{72}$ have almost single size due to lanthanide contraction.
(1). $\mathrm{Cu}^{2+} \xrightarrow[\text { excess }]{\overline{\mathrm{C} N}}\left[\underset{\text { Stable }}{\left.\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-} \xrightarrow{\mathrm{H}_{2} \mathrm{~S}}}\right.$

No reaction
$\mathrm{Cd}^{+2} \xrightarrow[\text { excess }]{\overline{\mathrm{C}} \mathrm{N}}\left[\underset{\text { Unstable }}{\mathrm{Cd}(\mathrm{CN})_{4}}\right]^{2-} \xrightarrow{\mathrm{H}_{2} \mathrm{~S}} \underset{\text { Yellow ppt }}{\mathrm{CdS}}$
(3). In catalytic dehydration carbocation is formed as an intermediate.
$\therefore \begin{gathered}\text { Rate of dehydration } \\ \text { of alcohol }\end{gathered} \propto \begin{gathered}\text { Stability of } \\ \text { carbocation }\end{gathered}$
(1)

(2) $\left(\mathrm{CH}_{3}\right)_{2} \underset{3^{\circ} \mathrm{C}^{+}}{\stackrel{+}{\mathrm{C}}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(3)

(20) (2).
(21) 9. $\quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$

Att $=0 \quad 1 \mathrm{~mol} \quad 0$
Ateqm $1-x \quad 2 x$
Total moles at equilibrium $=1+x$
$\mathrm{K}_{\mathrm{p}}=0.66 \frac{\left(\frac{2 \mathrm{x}}{1+\mathrm{x}} \times 0.5\right)^{2}}{\left(\frac{1-\mathrm{x}}{1+\mathrm{x}} \times 0.5\right)}=\frac{2 \mathrm{x}^{2}}{1-\mathrm{x}^{2}}$
or $\quad 0.66-0.66 \mathrm{x}^{2}=2 \mathrm{x}^{2} ; 2.66 \mathrm{x}^{2}=0.66$

$$
\begin{aligned}
& \mathrm{x}^{2}=\frac{0.66}{2.66}=0.25 \quad \text { or } \mathrm{x}=0.5 \\
& \mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=\frac{1-\mathrm{x}}{1+\mathrm{x}} \cdot \mathrm{P}=\frac{1-0.5}{1+0.5} \times 0.5=\frac{0.5}{3} \\
& \\
& \quad=0.168
\end{aligned}
$$

(22) 8. For $\mathrm{Y}(\mathrm{OH})_{2}\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha_{1}+\mathrm{C}_{1} \alpha_{2}$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=4 \times 10^{-3} \times 4 \times 10^{-3} \times \frac{50}{100} } \\
& =6 \times 10^{-3} \\
\therefore \quad & \mathrm{p}^{\mathrm{OH}}=-\log \left[\mathrm{OH}^{-}\right]=3-\log 6=2.22 \\
& \text { and } \mathrm{pH}=14-2.22=11.78
\end{aligned}
$$

(23) 5. Deduct the mass of SiO_{2} present in Kaolin, from the total mass of SiO_{2} in the rock.
Let we have 100 g of rock
Moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ present $=\frac{0.816}{102}=8 \times 10^{-3}$
\therefore Mass of SiO_{2} present in Kaolin

$$
=8 \times 10^{-3} \times 2 \times 60=0.96 \mathrm{~g}
$$

$\therefore \quad$ Percentage of free SiO_{2} in the rock

$$
\begin{equation*}
=1.22-0.96=0.26 \% \tag{24}
\end{equation*}
$$

1. First calculate $\Delta_{C} H$ per mol and then convert it into per gm.
The required thermochemical equation is

$$
\begin{gathered}
6 \mathrm{x} \mathrm{C}(\mathrm{~s})+5 \mathrm{x} \mathrm{H}_{2}(\mathrm{~g})+\frac{5 x}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
\rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{x}} ; \Delta_{\mathrm{f}} \mathrm{H}=? \\
\Delta_{\mathrm{f}} \mathrm{H}=\left[6 \mathrm{x} \times \Sigma \Delta_{\mathrm{C}} \mathrm{H}_{\mathrm{C}(\mathrm{~s})}+5 \mathrm{x} \times \Sigma \Delta_{\mathrm{C}} \mathrm{H}_{\mathrm{H}_{2}(\mathrm{~g})}\right] \\
-\left[\Delta_{\mathrm{C}} \mathrm{H}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{x}}\right]}\right] \\
=6 \mathrm{x} \times(-94.05)+5 \mathrm{x} \times(-68.32)-(-4.18) \times 162 \mathrm{x} \\
=-228.74 \mathrm{x} \mathrm{Kcal} / \mathrm{mol}=-\frac{228.74 \mathrm{x}}{162 \mathrm{x}} \\
=-1.41 \mathrm{Kcal} / \mathrm{gm} .
\end{gathered}
$$

(25) 5. In ketone for position isomerism minimum carbon required $=5$.
2-pentanone and 3-pentanone.
(26) (3). Length of rope $=$ constant

$x+P+2 y+\sqrt{\left(x-P^{\prime}\right)^{2}+P^{2}}=$ const.
$\frac{\mathrm{dx}}{\mathrm{dt}}+0+\frac{2 \mathrm{dy}}{\mathrm{dt}}+\frac{1}{2} \sqrt{\left(\mathrm{x}-\mathrm{P}^{\prime}\right)^{2}+\mathrm{P}^{2}}$

$$
\times 2\left(x-P^{\prime}\right) \frac{\mathrm{dx}}{\mathrm{dt}}=0
$$

$\mathrm{v}-2 \mathrm{v}^{\prime}+\cos \theta \mathrm{v}=0 ; 2 \mathrm{v}^{\prime}=\mathrm{v}(1+\cos \theta)$
$\therefore \quad \mathrm{v}^{\prime}=\frac{\mathrm{v}}{2}(1+\cos \theta)=\frac{\mathrm{v}}{2}\left(1+\cos 60^{\circ}\right)$
$\mathrm{v}^{\prime}=3 \mathrm{v} / 4$
(27)
(4). For observer on cart
$\overrightarrow{\mathrm{v}}_{\text {rel }}=0 ; \overrightarrow{\mathrm{S}}_{\text {rel }}=\frac{1}{2} \overrightarrow{\mathrm{a}}_{\mathrm{rel}} \mathrm{t}^{2}$
Trajectory is straight line along $\overrightarrow{\mathrm{a}}_{\text {rel }}$ for observer on ground trajectory is parabola because \vec{v}_{0} and \vec{g} are at angle θ initially.
(3). Work done in cyclic process for $\overrightarrow{\mathrm{F}}$, is zero therefore $\overrightarrow{\mathrm{F}}_{1}$ is conservative (all uniform forces are conservative)
Work done in a cyclic process in case \vec{F}_{2} is non-zero
$\mathrm{w}_{\mathrm{ABCD}}=\mathrm{w}_{\mathrm{AB}}+\mathrm{w}_{\mathrm{BC}}+\mathrm{w}_{\mathrm{CD}}+\mathrm{w}_{\mathrm{DA}}$
$\mathrm{w}_{\mathrm{AB}}=-\mathrm{F}_{\mathrm{AB}} \ell$
$\mathrm{w}_{\mathrm{BC}}=0$
$\mathrm{w}_{\mathrm{CD}}=+\mathrm{F}_{\mathrm{CD}} \ell$
$\mathrm{w}_{\mathrm{BA}}=0$
$\mathrm{F}_{\mathrm{BA}} \neq \mathrm{F}_{\mathrm{CD}}$

$\mathrm{w}_{\mathrm{ABCDA}} \neq 0$
(1). There is no change in velocity \perp to the spring, at the moment of maximum extension relative velocity along the spring is zero. Due to symmetry velocity of blocks is zero along spring at the moment of maximum extension.

Let extension be x
Applying conservation of energy

$$
\begin{align*}
& 2\left[\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}}{\sqrt{2}}\right)^{2}\right]+\frac{1}{2} \mathrm{kx}^{2}=2\left(\frac{1}{2} \mathrm{mv}^{2}\right) \tag{36}\\
& \mathrm{kx}^{2}=\mathrm{mv}^{2} \Rightarrow \quad \mathrm{x}=\mathrm{v} \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \tag{30}
\end{align*}
$$

(3). $m x=m\left(\frac{\ell}{2}-x\right)$

(31) (1). $\mathrm{v}_{\mathrm{z}}-0$ because the slope of the position graph is zero. The negative value of x shows that the particle is left of the equilibrium position, so the restoring force is to the right.
(32) (2). $\mathrm{F}_{\mathrm{y}}=\mathrm{T} \times$ Projected length in y direction

$$
\begin{equation*}
\mathrm{F}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{R} \tag{38}
\end{equation*}
$$

(33) (1). The distance between source and receiver is not changing, so there is no change in frequency. (1)]
(34) (2). As temperature increases spectral intensity corresponding to all wavelengths increases but the wavelength with maximum spectral intensity decreases according to Wein's displacement Law.
(35)
$\mathrm{x}=\frac{\ell}{4}$
$\mathrm{S}=\frac{\ell}{4}+\frac{\ell}{2}=\frac{3 \ell}{4}$
$P\left(\frac{M}{\rho}\right)^{\gamma}=P^{\prime}\left(\frac{M}{\rho^{\prime}}\right)^{\gamma} ;\left(\frac{\rho^{\prime}}{\rho}\right)^{\gamma}=\frac{P^{\prime}}{P}$
$\frac{\mathrm{P}^{\prime}}{\mathrm{P}}=(32)^{1.5}=\left(2^{5}\right)^{3 / 2}=2^{15 / 2}$
(40)
(2). $\mathrm{T}_{\mathrm{S}}=3 \mathrm{mg}$
$\frac{3 \mathrm{mg}}{\mathrm{A}_{\mathrm{s}}}=\mathrm{y}_{\mathrm{S}} \times \frac{\Delta \ell_{\mathrm{S}}}{\ell_{\mathrm{S}}} ; \frac{2 \mathrm{mg}}{\mathrm{A}_{\mathrm{b}}}=\mathrm{y}_{\mathrm{b}} \times \frac{\Delta \ell_{\mathrm{b}}}{\ell_{\mathrm{b}}}$
$\frac{\Delta \ell_{\mathrm{s}}}{\Delta \ell_{\mathrm{b}}}=\frac{3}{2} \times \frac{\ell_{\mathrm{s}}}{\ell_{\mathrm{b}}} \times \frac{\mathrm{A}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{S}}} \times \frac{\mathrm{y}_{\mathrm{b}}}{\mathrm{y}_{\mathrm{S}}}=\frac{3}{2} \times \frac{\mathrm{a}}{\mathrm{b}^{2} \mathrm{c}}$
(3). $\operatorname{For} r<a$
$\mathrm{V}=\frac{\mathrm{KQ}\left(3 \mathrm{a}^{2}-\mathrm{r}^{2}\right)}{2 \mathrm{a}^{3}}+\frac{\mathrm{K}(-\mathrm{Q})}{\mathrm{b}}+\frac{K \mathrm{Q}}{\mathrm{c}}$

For $\mathbf{a}<\mathbf{r}<$ b
$\mathrm{V}=\frac{\mathrm{KQ}}{\mathrm{r}}+\frac{\mathrm{K}(-\mathrm{Q})}{\mathrm{b}}+\frac{\mathrm{KQ}}{\mathrm{c}}$
For $\mathbf{b}<\mathbf{r}<\mathbf{c}$
$\mathrm{V}=\frac{\mathrm{KQ}}{\mathrm{r}}+\frac{\mathrm{K}(-\mathrm{Q})}{\mathrm{b}}+\frac{\mathrm{KQ}}{\mathrm{c}}=\frac{\mathrm{KQ}}{\mathrm{c}}$
For $\mathbf{r}>\mathrm{c}$
$\mathrm{V}=\frac{\mathrm{KQ}}{\mathrm{r}}+\frac{\mathrm{k}(-\mathrm{Q})}{\mathrm{r}}+\frac{\mathrm{kQ}}{\mathrm{r}}=\frac{\mathrm{kQ}}{\mathrm{r}}$
(3). $\frac{1}{2} \mathrm{Li}^{2}=\frac{1}{2} \mathrm{C} \mathrm{\varepsilon}^{2}$

$$
\begin{align*}
i & =\varepsilon \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}}=12 \sqrt{\frac{9 \times 10^{-12}}{2.5 \times 10^{-3}}}=\frac{12 \times 3}{5} \sqrt{10^{-8}} \\
\mathrm{i} & =7.2 \times 10^{-4} \mathrm{~A} \tag{39}
\end{align*}
$$

(2).
$\mathrm{P}=\frac{\mathrm{a}^{3} \mathrm{~b}^{2}}{\mathrm{~cd}} \Rightarrow \frac{\Delta \mathrm{P}}{\mathrm{P}}= \pm\left(3 \frac{\Delta \mathrm{a}}{\mathrm{a}}+2 \frac{\Delta \mathrm{~b}}{\mathrm{~b}}+\frac{\Delta \mathrm{c}}{\mathrm{c}}+\frac{\Delta \mathrm{d}}{\mathrm{d}}\right)$

$$
= \pm(3 \times 1+2 \times 2+3+4)= \pm 14 \%
$$

(4). $\mathrm{F}=\left[\mathrm{M} \mathrm{V} \mathrm{T}^{-1}\right] \Rightarrow \mathrm{M}=\left[\mathrm{F} \mathrm{V}^{-1} \mathrm{~T}\right]$
(41) (1). When 100 V DC applied,
$\mathrm{X}_{\mathrm{L}}=0$ (because $\mathrm{f}=0$)
From, $\mathrm{V}=\mathrm{I} \mathrm{Z}$
$\mathrm{V}=\operatorname{IR}(\because \mathrm{Z}=\mathrm{R}) ; \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{100}{1}$
$\mathrm{R}=100 \Omega$
When 100 V AC applied
$V=I Z ; Z=\frac{V}{I}=\frac{100}{0.5} ; Z=200 \Omega$
Now, $Z^{2}=R^{2}+X_{L}^{2}$
$\mathrm{X}_{\mathrm{L}}{ }=\mathrm{Z}^{2}-\mathrm{R}^{2} ; \mathrm{X}_{\mathrm{L}}=100 \sqrt{3} \Omega$
and $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
So $\omega \mathrm{L}=100 \sqrt{3} ; \mathrm{L}=\frac{100 \sqrt{3}}{\omega}=\frac{100 \sqrt{3}}{2 \pi \mathrm{f}}$
$\mathrm{L}=\frac{100 \sqrt{3}}{2 \pi \times 50} \Rightarrow \mathrm{~L}=0.55 \mathrm{H}$
(42)
(1).

$$
\mathrm{e}_{\mathrm{net}}=\mathrm{Bv} \ell+\mathrm{Bv} \ell=2 \mathrm{Bv} \ell
$$

(43) (2). Power $=10 \times 10^{3} \mathrm{~W}=10^{4} \mathrm{~J} / \mathrm{s}$

Amount of U^{235} to operate 10 kW reactor is

$$
\begin{aligned}
& =\frac{10^{4} \times 235}{6.02 \times 10^{23} \times 200 \times 10^{6} \times 1.6 \times 10^{-19}} \\
& =1.22 \times 10^{-7} \mathrm{~g} / \mathrm{s}
\end{aligned}
$$

(44)
(1). $\mathrm{K}_{\max }=\frac{\mathrm{hc}}{\lambda}-\frac{\mathrm{hc}}{\lambda_{0}}=12400\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right) \mathrm{eV}-\AA$

$$
\begin{aligned}
& =12400\left(\frac{1}{1800}-\frac{1}{2300}\right) \mathrm{eV} \\
& =\frac{12400 \times 500}{1800 \times 2300}=1.497 \mathrm{eV} \approx 1.5 \mathrm{eV}
\end{aligned}
$$

(45) (2). Energy of electron $E=m c^{2}$ and $\lambda_{e}=\frac{h}{m v}$

$$
\Rightarrow \quad \mathrm{m}=\frac{\mathrm{h}}{\lambda_{\mathrm{e}} \mathrm{v}} \quad \text { so } \mathrm{E}=\frac{\mathrm{h}}{\lambda_{\mathrm{e}} \mathrm{v}} \mathrm{c}^{2}
$$

and energy of photon $E=\frac{h c}{\lambda_{\text {ph }}}$ given that energy of electron is equal to photon
so $\frac{\mathrm{h}}{\lambda_{\mathrm{e}} \mathrm{v}} \mathrm{c}^{2}=\frac{\mathrm{hc}}{\lambda_{\text {ph }}} \therefore \frac{\lambda_{\mathrm{e}}}{\lambda_{\mathrm{ph}}}=\frac{\mathrm{c}}{\mathrm{v}}$
$\because \mathrm{c}>\mathrm{v} \quad \therefore \lambda_{\mathrm{e}}>\lambda_{\mathrm{ph}}$
6.

Force on this element, $\mathrm{dF}=\frac{\operatorname{GM}(\lambda \mathrm{dx})}{\mathrm{x}^{2}}$
\therefore Total force on the stick, $\int_{0}^{\mathrm{F}} \mathrm{dF}=\mathrm{GM} \lambda \int_{\mathrm{R}}^{3 \mathrm{R}} \frac{\mathrm{dx}}{\mathrm{x}^{2}}$

$$
\begin{aligned}
\mathrm{F}=\mathrm{GM} \lambda\left[\frac{-1}{\mathrm{x}}\right]_{\mathrm{R}}^{3 \mathrm{R}} & =\mathrm{GM} \lambda\left[\frac{1}{\mathrm{R}}-\frac{1}{3 \mathrm{R}}\right] \\
& =\mathrm{GM} \lambda\left[\frac{2}{3 \mathrm{R}}\right]
\end{aligned}
$$

CM of stick is rotating in a circle of radius 2 R
$\therefore \quad \mathrm{GM}\left[\frac{2 \lambda}{3 \mathrm{R}}\right]=\lambda(2 \mathrm{R})(2 \mathrm{R}) \omega^{2} ; \omega^{2}=\frac{\mathrm{GM}}{6 \mathrm{R}^{3}}$
$\mathrm{T}=2 \pi \sqrt{6} \sqrt{\frac{\mathrm{R}^{3}}{\mathrm{gR}^{2}}}=2 \pi \sqrt{6} \sqrt{\frac{\mathrm{R}}{\mathrm{g}}}$
5. $I=\frac{24}{\frac{R G}{R+G}+1}$
$\mathrm{V}=24-$ Potential difference across 1Ω
$=24-1 \times \mathrm{I}$
$\mathrm{V}=24-\frac{24}{\left(\frac{1}{1 / R}+\frac{1}{\mathrm{G}}\right)+1}$
For $\mathrm{G} \rightarrow \infty \Rightarrow \frac{1}{\mathrm{G}} \rightarrow 0 \& \mathrm{~V}=20 \mathrm{~V}$
$\Rightarrow 20=24-\frac{24}{\mathrm{R}+1} \Rightarrow \mathrm{R}=5 \Omega$
(48)
2.

Apparent depth $=\frac{d_{1}}{\mu_{1}}+\frac{d_{2}}{\mu_{2}}$
$\frac{\mathrm{h}}{4 \mu}+\frac{3 \mathrm{~h}}{4 \times \frac{3 \mu}{2}}=\frac{\mathrm{h}}{2} ; \mu=\frac{3}{2}$
(49)
5. Energy of photon

$$
=\frac{\mathrm{hc}}{\lambda}=\mathrm{hcR}\left(\frac{1}{1^{2}}-\frac{1}{5^{2}}\right)=\frac{24 \mathrm{hcR}}{25}
$$

Momentum of photon
$=\frac{\mathrm{E}}{\mathrm{c}}=\frac{24 \mathrm{hR}}{25}=$ Momentum of atom
Velocity of atom $=\frac{24 \mathrm{hR}}{25 \mathrm{~m}}$
where $\mathrm{m}=$ mass of atom.
(50)

Here, $\beta=100, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BE}}=0$
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$
$\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}}{\mathrm{R}_{\mathrm{C}}}=\frac{10-5}{1 \mathrm{k} \Omega}=5 \mathrm{~mA}$
$\because \quad \beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}} ; \mathrm{I}_{\mathrm{B}}=\frac{\mathrm{I}_{\mathrm{C}}}{\beta}=\frac{5}{100} \mathrm{~mA}$
$V_{C C}=I_{B} R_{B}+V_{B E}$
$R_{B}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{I}_{\mathrm{B}}}=\frac{10}{0.05 \mathrm{~mA}}=200 \times 10^{3} \Omega$
(51)

$$
\text { (1). } \begin{align*}
y & =\frac{x^{2}}{8}+x \cos x+2 \cos ^{2} x-1 \\
& =\frac{1}{8}\left[x^{2}+8 x \cos x+16 \cos ^{2} x\right]-1 \\
& =\frac{(x+4 \cos x)^{2}}{8}-1
\end{align*}
$$

(4). We have, $\mathrm{x}^{2}+\mathrm{x}-2=0<_{\beta}^{\alpha}$

$$
\begin{align*}
\therefore \quad & \alpha+\beta=-1 ; \alpha \beta=-2 \tag{52}\\
& \frac{\alpha \beta^{4}(\beta+1)^{4}+\beta \alpha^{4}(\alpha+1)^{4}}{\alpha^{2}+\beta^{2}+\alpha+\beta}
\end{align*}
$$

$$
=\frac{\alpha^{5} \beta^{4}+\beta^{5} \alpha^{4}}{(\alpha+\beta)^{2}-2 \alpha \beta+\alpha+\beta}
$$

$$
=\frac{(\alpha \beta)^{4}(\alpha+\beta)}{-2 \alpha \beta}=\frac{(\alpha \beta)^{4}}{2 \alpha \beta}=\frac{16}{-4}=-4
$$

Aliter: $\frac{\alpha \beta^{4}(\beta+1)^{4}+\beta \alpha^{4}(\alpha+1)^{4}}{\alpha^{2}+\beta^{2}+\alpha+\beta}$

$$
\begin{aligned}
& =\frac{16(\alpha+\beta)}{4}\left[U \operatorname{sing} \alpha^{2}+\alpha=\beta^{2}+\beta=2\right. \text { and } \\
& \left.\qquad \alpha+1=\frac{2}{\alpha} \text { and } \beta+1=\frac{2}{\beta}\right] \\
& =\frac{-16}{4}=-4
\end{aligned}
$$

(53) (3). For the G.P. $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$,

$$
P_{n}=a(a r)\left(a r^{2}\right) \ldots \ldots . .\left(a r^{n-1}\right)=a^{n} r^{n(n-1) / 2}
$$

Given $\mathrm{a}=16$ and $\mathrm{r}=1 / 4$
$\therefore \quad \mathrm{S}=\frac{16}{1-(1 / 2)}=32$
(54)

$$
\therefore \quad \mathrm{S}=\sum_{\mathrm{n}=1}^{\infty} \sqrt[n]{\mathrm{P}_{\mathrm{n}}}=\sum_{\mathrm{n}=1}^{\infty} \mathrm{ar}^{(\mathrm{n}-1) / 2}
$$

$$
\begin{aligned}
\sum_{\mathrm{n}=1}^{\infty} \mathrm{ar}^{(\mathrm{n}-1) / 2}=\mathrm{a}[1+ & \sqrt{\mathrm{r}}+\mathrm{r}+\mathrm{r} \sqrt{\mathrm{r}} \\
& +\ldots \ldots+\infty]=\frac{\mathrm{a}}{1-\sqrt{\mathrm{r}}}
\end{aligned}
$$

(1). Group 6 persons can be divided into 3 equal groups in $\frac{6!}{2!\cdot 2!\cdot 2!\cdot 3!}$ ways

$$
\begin{array}{lll}
\mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{P}_{3} \\
\mathrm{P}_{4} & \mathrm{P}_{5} & \mathrm{P}_{6}
\end{array}
$$

say $\mathrm{P}_{1} \mathrm{P}_{4} ; \mathrm{P}_{2} \mathrm{P}_{5} ; \mathrm{P}_{3} \mathrm{P}_{6}$
Now each elements of a group can be arranged in 3 ! ways.

Total ways $=\frac{6!\cdot 3!}{2!\cdot 2!\cdot 2!\cdot 3!}=\frac{720}{8}=90$
(55)
(2).

Domain of $f(\mathrm{x})$ is $|\mathrm{x}| \geq 1$
From the graph for $x \geq 1 \mathrm{f}(\mathrm{x})$ can attain values from $\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right]$
Also for $\mathrm{x} \leq-1, \mathrm{f}(\mathrm{x})$ can attain values from $\left[\frac{5 \pi}{4}, \frac{3 \pi}{2}\right)$
(56)

Now, R.H.L. $=f\left(0^{+}\right)$
$=\operatorname{Lim}_{x \rightarrow 0^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 0^{+}} 3\left(1+\frac{|\sin x|}{3}\right)^{\frac{6}{|\sin x|}}=3 e^{2}$.
Similarly, L.H.L $=f\left(0^{-}\right)=\operatorname{Lim}_{x \rightarrow 0^{-}} f(x)=3 e^{\alpha}$
For the function $\mathrm{f}(\mathrm{x})$ to be continuous at $\mathrm{x}=0$, we must have $\mathrm{f}\left(0^{+}\right)=\mathrm{f}\left(0^{-}\right)=\mathrm{f}(0)$
$\Rightarrow 3 \mathrm{e}^{\alpha}=3 \mathrm{e}^{2}=\beta$. So, $\alpha=2, \beta=3 \mathrm{e}^{2}$.
(57)
(4). $a=(x+1)^{2}+2 \Rightarrow a=2$
$\mathrm{b}=\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{\sin 2 \mathrm{x}}{\frac{2\left(\mathrm{e}^{2 \mathrm{x}}-1\right) \cdot 2 \mathrm{x}}{2 \mathrm{x}}}=\frac{1}{2}$
$\sum_{r=0}^{n} a^{r} b^{n-r}=\sum 2^{r}\left(\frac{1}{2}\right)^{n-r}=\frac{1}{2^{n}} \sum_{r=0}^{n} 2^{2 r}$
$=\frac{1}{2^{\mathrm{n}}} \sum_{\mathrm{r}=0}^{\mathrm{n}} 4^{\mathrm{r}}=\frac{1}{2^{\mathrm{n}}}\left[1+4+4^{2}+\right.$ \qquad $\left.+4^{n}\right]$
$=\frac{1}{2^{\mathrm{n}}}\left[\frac{4^{\mathrm{n}+1}-1}{3}\right]=\frac{4^{\mathrm{n}+1}-1}{3.2^{\mathrm{n}}}$
(2). Differentiate both sides w.r.t. x
$f^{\prime}(x)=\cos x+f^{\prime}(x)\left(2 \sin x-\sin ^{2} x\right)$
$\therefore \quad\left(1+\sin ^{2} x-2 \sin x\right) f^{\prime}(x)=\cos x$
$f^{\prime}(x)=\frac{\cos x}{1+\sin ^{2} x-2 \sin x}=\frac{\cos x}{(1-\sin x)^{2}}$
Integrating $f(x)=\int \frac{\cos x d x}{(1-\sin x)^{2}}$
(Put $1-\sin x=t$);
$\mathrm{f}(\mathrm{x})=-\int \frac{\mathrm{dt}}{\mathrm{t}^{2}}=\frac{1}{\mathrm{t}}=\frac{1}{1-\sin \mathrm{x}}+\mathrm{C}$
Also $\mathrm{f}(0)=0$, hence $\mathrm{C}=-1$

$$
\begin{aligned}
f(x) & =\frac{1}{1-\sin x}-1=\frac{1-1+\sin x}{1-\sin x} \\
& =\frac{\sin x}{1-\sin x}
\end{aligned}
$$

(3). Let $f(x)=\left(\frac{a^{2}-4}{a^{2}+2}\right) x^{3}-3 x+\sin 3$
$\therefore \quad f^{\prime}(x)=3 \cdot\left(\frac{a^{2}-4}{a^{2}+2}\right) x^{2}-3$
As, fis strictly decreasing on R
So, $\left(\frac{\mathrm{a}^{2}-4}{\mathrm{a}^{2}+2}\right) \leq 0 \Rightarrow \mathrm{a}^{2}-4 \leq 0 \Rightarrow \mathrm{a} \in[-2,2]$.
(4). $\quad A^{3}=B^{3}$
and $A^{2} B=B^{2} A$
(1) $-(2)$ gives, $\quad A^{3}-A^{2} B=B^{3}-B^{2} A$
$A^{2}(A-B)=-B^{2}(A-B)$
$\Rightarrow \quad\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)(\mathrm{A}-\mathrm{B})=0$
$\operatorname{det}\left(A^{2}+B^{2}\right)(A-B)=0$
$\operatorname{det}\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right) \cdot \operatorname{det}(\mathrm{A}-\mathrm{B})=0$
(61)
(3).

$\mathrm{P}($ Second test $)=\mathrm{P}(\mathrm{D} \mathrm{D})=\frac{2}{5} \cdot \frac{1}{4}=\frac{1}{10}$
(62)
(63)
(64)
(65)
(4). $a t_{1}^{2}=2 a t_{1} \Rightarrow t_{1}=2 ; P(4 a, 4 a)$
(1). Area $=\int_{m}^{2 m} \frac{1}{x} d x=\left.\ln x\right|_{m} ^{2 m}$

$$
=\ln (2 m)-\ln (m)=\ln 2
$$

So the area is independent of m.

$$
\begin{array}{ll}
\therefore & \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}=-3 \\
\therefore & \mathrm{~m}_{\mathrm{SP}}=\frac{4 \mathrm{a}}{4 \mathrm{a}-\mathrm{a}}=\frac{4}{3} \\
& \mathrm{~m}_{\mathrm{SQ}}=\frac{-6 \mathrm{a}}{9 \mathrm{a}-\mathrm{a}}=-\frac{3}{4}
\end{array} \quad \angle \mathrm{PSQ}=90^{\circ}
$$

(2). Let $\mathrm{A}=\{1,2,3\}$

Let the two transitive relations on set A be $\mathrm{R}=\{(1,1),(1,2)\}$ and $\mathrm{S}=\{(2,2),(2,3)\}$
Now, $R \cup S=\{(1,1),(1,2),(2,2),(2,3)\}$
Here, $(1,2),(2,3) \in R \cup S$
$\Rightarrow \quad(1,3) \notin R \cup S$
$\therefore \quad \mathrm{R} \cup \mathrm{S}$ is not transitive.
(3).

p	q	$\mathrm{p} \Rightarrow \mathrm{q}$	$\sim(\mathrm{p} \Rightarrow \mathrm{q})$	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \vee \sim \mathrm{q}$	$\sim(\mathrm{p} \Rightarrow \mathrm{q})$ $\Leftrightarrow \sim \sim \mathrm{p} \vee \sim \mathrm{q}$
T	T	T	F	F	F	F	T
T	F	F	T	F	T	T	T
F	T	T	F	T	F	T	F
F	F	T	F	T	T	T	F

The last column shows that the result is neither a tautology and a contradiction.
(69)
(66) (4). Let the side length be 2 k

Now point $((\mathrm{k}+4),-2 \mathrm{k})$ lies on parabola.
$y=x^{2}-8 x+12$
$(-2 \mathrm{k})=(\mathrm{k}+4)^{2}-8(\mathrm{k}+4)+12$
$\Rightarrow \mathrm{k}^{2}+2 \mathrm{k}-4=0$
$\Rightarrow \mathrm{k}=\frac{-2+\sqrt{4+16}}{2}=1+\sqrt{5}$

So area $=4 \mathrm{k}^{2}=4(-1+\sqrt{5})^{2}=4(6-2 \sqrt{5})$
(3). $\mathrm{f}(\mathrm{x})=\cos (2 \pi[\mathrm{x}]+\pi|\mathrm{x}|)=\cos (\pi|\mathrm{x}|)$
$\mathrm{f}(-\mathrm{x})=f(\mathrm{x})$ hence function is even.
It is a periodic function

From graph $f(\mathrm{x})=|f(\mathrm{x})|$ is not possible for allx.
(1). Let $\mathrm{P} \equiv(2 \sqrt{2} \cos \theta, 2 \sin \theta)$

$$
\begin{align*}
& \mathrm{Q} \equiv(-2 \sqrt{2} \sin \theta, 2 \cos \theta) \tag{68}\\
& (\mathrm{PQ})^{2}=8(\cos \theta+\sin \theta)^{2}+4(\sin \theta-\cos \theta)^{2} \\
& = \\
& =12+4 \sin 2 \theta \leq 16 \\
& (\mathrm{PQ})_{\max }=4
\end{align*}
$$

(3). $\quad(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})-(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b})+(\vec{b} . \vec{c})(\vec{c} \cdot \vec{a})$

$$
\begin{align*}
& -(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{c}})+(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}})-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}})-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}})(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}) \\
& =0-(\mathrm{a} \cdot \overrightarrow{\mathrm{c}})+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})-0+0-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}})(\because \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=0) \\
& \quad=(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}})+1-1 \\
& \quad=((\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}})-1)((\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})-1)-1 \\
& \quad(1-1)(1-1)-1=-\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \tag{70}
\end{align*}
$$

(1). Let plane is $\mathrm{Ax}+\mathrm{Bz}=1$

Passes through $(1,0,1) \&(3,2,-1)$
$\Rightarrow \mathrm{A}+\mathrm{B}=1 \& 3 \mathrm{~A}-\mathrm{B}=1 \Rightarrow \mathrm{~A}=1 / 2, \mathrm{~B}=1 / 2$
Plane is $x+z=2$
Point $\mathrm{P}(\lambda+1,2 \lambda+2,3 \lambda+5)$ lie on plane
$\Rightarrow(\lambda+1)+(3 \lambda+5)=2 \Rightarrow \lambda=-1$
\Rightarrow Point is $(0,0,2)$
8. $\tan \theta=\frac{\mathrm{R}}{\mathrm{L}}$ where $2 \theta=45^{\circ}$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(note that $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$)
$1=\frac{2(\mathrm{R} / \mathrm{L})}{1-\left(\mathrm{R}^{2} / \mathrm{L}^{2}\right)}=\frac{2 \mathrm{RL}}{\mathrm{L}^{2}-\mathrm{R}^{2}}$
$=\frac{2 \mathrm{a} \sqrt{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}-\mathrm{a}^{2}}}{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}-\mathrm{a}^{2}-\mathrm{a}^{2}}$
(
$\left(x^{2}+y^{2}-2 a^{2}\right)^{2}=4 a^{2}\left(x^{2}+y^{2}-a^{2}\right)$
$\left(x^{2}+y^{2}\right)^{2}+4 a^{4}-4 a^{2}\left(x^{2}+y^{2}\right)$
$=4 a^{2}\left(x^{2}+y^{2}-a^{2}\right)$
$\left(x^{2}+y^{2}\right)^{2}+8 a^{4}=8 a^{2}\left(x^{2}+y^{2}\right)$
$\left(x^{2}+y^{2}\right)^{2}=8 a^{2}\left(x^{2}+y^{2}-a^{2}\right) \Rightarrow \lambda=8$
(72)
2. $g(x)=f^{-1}(x)$
$\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
$\Rightarrow \quad \mathrm{g}^{\prime}(\mathrm{f}(\mathrm{x})) \cdot \mathrm{f}^{\prime}(\mathrm{x})=1 \Rightarrow \mathrm{~g}^{\prime}(\mathrm{f}(\mathrm{x}))=\frac{1}{\mathrm{f}^{\prime}(\mathrm{x})}$
Put $\mathrm{x}=0 \Rightarrow \mathrm{~g}^{\prime}(1)=\frac{1}{\mathrm{f}^{\prime}(0)}=\frac{1}{1 / 2}=2$
(73)
7. $\lim _{\mathrm{n} \rightarrow \infty} \frac{\Sigma \mathrm{r}^{2} \Sigma \mathrm{r}^{4}}{\Sigma \mathrm{r}^{7}}=\frac{\mathrm{K}+1}{15}$
$\frac{\int_{0}^{1} x^{2} d x \int_{0}^{1} x^{4} d x}{\int_{0}^{1} x^{7} d x}=\frac{K+1}{15} ; \frac{\frac{1}{3} \times \frac{1}{5}}{\frac{1}{8}}=\frac{K+1}{15} ; K=7$
(74)
7. $\sqrt{x^{2}+y^{2}}=\left|\frac{3 x-4 y+12}{5}\right|$
\Rightarrow focus is $(0,0)$ and directrix is $3 x-4 y+12=0$

(75)
6. $z^{11}+2 z^{10}+3 z^{9}+$ \qquad $+2 z^{2}+z=0$
$\Rightarrow \mathrm{z}\left(\mathrm{z}^{10}+2 \mathrm{z}^{9}+3 \mathrm{z}^{8}+\right.$ $.+2 z+1)=0$
$\Rightarrow \mathrm{z}\left(1+\mathrm{z}+\mathrm{z}^{2}+\mathrm{z}^{3}+\mathrm{z}^{4}+\mathrm{z}^{5}\right)^{2}=0$
$\Rightarrow z\left(\frac{1-z^{6}}{1-z}\right)^{2}=0$
$\Rightarrow z\left(1-z^{6}\right)^{2}=0$
$\therefore \quad \mathrm{z}=0$ and every root of the equation
$z^{6}-1=0($ except $z=1)$ two times repeated are the 11 roots of the given equation.

$$
z=(1)^{1 / 6}=\cos \frac{2 m \pi}{6}+i \sin \frac{2 m \pi}{6}
$$

$$
\mathrm{m}=1,2,3,4,5
$$

$$
\therefore \quad \sum_{n=1}^{11}\left|a_{n}\right|=0+2\left(\sum_{m=1}^{5}\left|\cos \frac{m \pi}{3}\right|\right)
$$

$$
\begin{aligned}
& =2\binom{\left|\cos \frac{\pi}{3}\right|+\left|\cos \frac{2 \pi}{3}\right|+|\cos \pi|}{+\left|\cos \frac{4 \pi}{3}\right|+\left|\cos \frac{5 \pi}{3}\right|} \\
& =2\left(\frac{1}{2}+\frac{1}{2}+1+\frac{1}{2}+\frac{1}{2}\right)=6
\end{aligned}
$$

